

# PAPER NAME: DATA STRUCTURE AND ALGORITHM

PAPER CODE : CS 302 & CS 392

#### Course File

# Course Title/Code: Data Structure and Algorithm/CS302 & CS392

#### Semester:-1st Year:- 2nd Group:- B

# Name of the Faculty: Prof. Sutapa Bhattacharya E-mail : sutapa2007@gmail.com

#### **Class Schedule:**

| Day       | Monday | Tuesday [ 2L ]    | Wednesday[L]       | Thursday | Friday [ T ]      |
|-----------|--------|-------------------|--------------------|----------|-------------------|
| Timing(B) |        | 11:40 am – 1:20pm | 11:40 am – 12:30pm |          | 2:10 pm – 3:00 pm |

#### Laboratory Schedule:

| Day      | Monday | Tuesday           | Wednesday | Thursday          | Friday |
|----------|--------|-------------------|-----------|-------------------|--------|
| Group B1 |        |                   |           | 2:10 pm – 4:40 pm |        |
| Group B2 |        | 2:10 pm – 4:40 pm |           |                   |        |

#### **Hours of Meeting Students:**

| Day       | Monday       | Tuesday      | Wednesday    | Thursday     | Friday       |
|-----------|--------------|--------------|--------------|--------------|--------------|
| Timing(B) | 3.50pm4.50pm | 3.50pm4.50pm | 3.50pm4.50pm | 3.50pm4.50pm | 3.50pm4.50pm |

• OR Byappointment.

#### i) Course Objective:

Students will be capable to demonstrate the basic concept of data structures and implement it through C programming language and compute asymptotic notations of an algorithm to analyze the consumption of resources (time/space).

#### ii) Course Outcomes:

After completion of this course the students are expected to be able to demonstrate following Knowledge, skills and attitudes.

#### a) The Students will be able to:

| COs     | Outcomes                                                                                                                          | Targets   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|
| CS302.1 | <ul> <li>1. Describe ideas about Algorithm and basic data structures.</li> <li>(BT-LEVEL 2)</li> </ul>                            | 60% marks |
| CS302.2 | 2. Implement linear data Structure like array, linked list and its operations. (BT- LEVEL 3)                                      | 60% marks |
| CS302.3 | 3. Solve the different problems on stack, queue and recursive techniques.(BT-<br>LEVEL 3)                                         | 60% marks |
| CS302.4 | <b>4.</b> Utilize the knowledge about the basic data structure and algorithm in non-linear data structures. ( <b>BT-LEVEL 3</b> ) | 60% marks |
| CS302.5 | <b>5. Verify</b> the complexity of standard algorithms for Sorting, Searching and Hashing. ( <b>BT-LEVEL 5</b> )                  | 60% marks |

**b)** Once the student has successfully complete this course, he/she must be able to answer the following questions or perform/demonstrate the following:

| SN  | QUESTION                                                                    | BT- LEVEL |
|-----|-----------------------------------------------------------------------------|-----------|
| 1.  | Definelinear and non-linear data structure.                                 | 2         |
| 2.  | <b>Describe</b> briefly about asymptotic notations.                         | 2         |
| 3.  | How do you <b>implement</b> thelinked list data structure?                  | 3         |
| 4.  | How to <b>solve</b> the problem of singly linked list?                      | 3         |
| 5.  | How do you <b>implement</b> stack using array and linked list?              | 3         |
| 6.  | How do you <b>implement</b> linear queue using array and linked list?       | 3         |
| 7.  | How do you <b>implement</b> linear queue using array and linked list?       | 3         |
| 8.  | How to <b>calculate</b> Balance factor in AVL tree?                         | 3         |
| 9.  | How can implement a non-linear data structure?                              | 3         |
| 10. | What is the technique to <b>detect</b> worst time complexity in quick sort? | 5         |
| 11. | How to <b>verify</b> complexity of sorting algorithm?                       | 5         |

#### Data Structure and Algorithm Syllabus [in Units] Paper Code: CS302 Contracts: 3L + 1 T Credits- 4

## Unit -1: Introduction (2L)

Why we need data structure?

Concepts of data structures: a) Data and data structure b) Abstract Data Type and Data Type. Algorithms and programs, basic idea of pseudo-code.

Algorithm efficiency and analysis, time and space analysis of algorithms-order notations.

# Unit-2: Array (2L)

3

Different representations – row major, column major. Sparse matrix - its implementation and usage.Array representation of polynomials.

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

# Unit-3: Linked List (4L)

Singly linked list, circular linked list, doubly linked list, linked list representation of polynomial and applications.

#### Unit-4: Stack and Queue (5L)

Stack and its implementations (using array, using linked list), applications. Queues, circular queue, dequeue. Implementation of queue- both linear and circular (using array, using linked list), applications.

#### Unit-5: Recursion (2L)

Principles of recursion – use of stack, differences between recursion and iteration, tail recursion. Applications - The Tower of Hanoi, Eight Queens Puzzle.

## Unit-6: Nonlinear Data structures Trees (9L)

Basic terminologies, forest, tree representation (using array, using linked list). Binarytrees-binarytreetraversal(pre-,in-,post-order),threadedbinarytree(left,right,full)-non-recursive traversal algorithms using threaded binary tree, expression tree. Binary search tree- operations (creation, insertion, deletion, searching). Height balanced binary tree – AVL tree (insertion, deletion with examples only). B-Trees–

operations (insertion, deletion with examples only).

## Unit-7: Nonlinear Data structures Trees Graphs (6L):

Graph definitions and concepts (directed/undirected graph, weighted/un-weighted edges, sub-graph, degree, cut-vertex/articulationpoint, pendantnode, clique, completegraph, connected components-strongly connected component, weakly connected component, path, shortest path, isomorphism).

Graph representations/storage implementations – adjacency matrix, adjacency list, adjacency multi-list.

Graph traversal and connectivity – Depth-first search (DFS), Breadth-first search (BFS) – concepts of edges used in DFS and BFS (tree-edge, back-edge, cross-edge, and forward-edge), applications.

Minimal spanning tree – Prim's algorithm (basic idea of greedy methods).

#### Unit -8: Sorting (5L)

Bubble sort and its optimizations, insertion sort, shell sort, selection sort, merge sort, quicksort, heap sort (concept of max heap, application – priority queue), radix sort.

#### Unit -9: Searching (2L)

Sequential search, binary search, interpolation search.

## Unit -10: Hashing (3L)

Hashing functions, collision resolution techniques.

## c) Unit Layout

| Unit No. | Unit            | Lecture Hours | Tutorials | Laboratory<br>Hours |
|----------|-----------------|---------------|-----------|---------------------|
| 1        | Introduction    | 2HRS          |           |                     |
| 2        | Array           | 2 HRS         | 1         | 3 HRS               |
| 3        | Linked List     | 4 HRS         | 1         | 12 HRS              |
| 4        | Stack and Queue | 5 HRS         | 2         | 6 HRS               |
| 5        | Recursion       | 2 HRS         | 1         | 3 HRS               |
| 6        | Trees           | 9 HRS         | 2         | 3 HRS               |
| 7        | Graphs          | 6 HRS         | 2         |                     |

| 8  | Sorting   | 5 HRS | 1  | 6 HRS |
|----|-----------|-------|----|-------|
| 9  | Searching | 2 HRS | 1  | 3 HRS |
| 10 | Hashing   | 3 HRS | 1  |       |
|    | Total     | 40    | 12 | 36HRS |

# Text Books:

- 1) Data Structure and Algorithms, Seymour Lipschutz, TMH Publications
- 2) Data Structures using C and C++ by Langsam, Tenenbaum, PHI publications

# **Reference Books:**

- 1) ``Fundamentals of Data Structures of C'' by Ellis Horowitz, Sartaj Sahni, Susan Anderson-freed
- 2) Data structures through Clanguage by Samiran Chattopadhyay

## d) Evaluation Scheme:

## 1) Theory:

| Evaluation Criteria          | Marks |
|------------------------------|-------|
| First& Second Internal Exam* | 15    |
| Assignments/Quiz             | 10    |
| Attendance                   | 5     |
| University Exam              | 70    |
| Total                        | 100   |

\* Twointernalexaminations are conducted; based on those two tests, average of the mare considered in a scale of 15.

## **University Grading System:**

| Grade | Marks         |
|-------|---------------|
| 0     | 90% and above |
| Е     | 80-89.9%      |
| А     | 70–79.9%      |
| В     | 60-69.9%      |
| С     | 50-59.9%      |
| D     | 40-49.9%      |
| F     | Below 40%     |

## 2) Practical:

| <b>Evaluation Criteria</b> | Marks |
|----------------------------|-------|
| Internal Exam*             | 40    |
| University Exam            | 60    |
| Total                      | 100   |

\*Internal Evaluation will be based on daily lab performance as per the following schedule:

# e) Laboratory Evaluation:

| Experiment<br>No. | Experiment Name                                                                                                                                                                                                                                                                                                   | Schedule | Marks |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| P1                | Implement the following Operationof Arraydata structure:1)1)InsertanddeleteanelementintoanArray.2)Traverse thearray.                                                                                                                                                                                              | 3 HRS    | 3     |
| P2                | <ul> <li>Implement the following Operation of Single linked list :</li> <li>1) Create and Traverse a single linked list.</li> <li>2) Insertanddeleteanelementfromalist</li> <li>3) Reverse a single list.</li> <li>4) Searching the element from the list 5)Sorting the node values in ascending order</li> </ul> | 3 HRS    | 4     |
| Р3                | <ol> <li>Implement The following Stack Operation using Array<br/>and Linked List :</li> <li>a)PUSH() b)POP() c) Traversal</li> <li>Writeaprogramtoimplement Towerof Hanoi and 8queen<br/>puzzleproblemusing recursion</li> </ol>                                                                                  | 3 HRS    | 4     |
| P4                | <ul> <li>1)Implement The following linear Queue Operation using Array and Linked list:</li> <li>a)Enqueue() b)Dequeue() c)Traversal</li> <li>2)Implement The following Circular Queue Operation using Array :</li> <li>a)Enqueue() b)Dequeue() c) Traversal</li> </ul>                                            | 3 HRS    | 4     |

6

| P5  | Implement The following Double ended Queue Operation<br>using Array :<br>a)Insert left() b)Insert right() c)Delete left()d)Delete<br>right()e)Traversal()                   | 3 HRS            | 4  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| P6  | <ul><li>Implement the following Operation of Double linked list :</li><li>1) CreateandTraverseadoublelinkedlist.</li><li>2) Insertanddeleteanelement from a list.</li></ul> | 3 HRS            | 3  |
| P7  | Implement the following Operation of Circular linked list:1) CreateandTraverseadoublelinkedlist.2) Insert and delete an element from a list.                                | 3 HRS            | 3  |
| P8  | Write a program to implement polynomial additionand multiplicationusinglinkedlist.                                                                                          | 3 HRS            | 3  |
| Р9  | <ul><li>Implement The following Binary search Tree operation :</li><li>a) Insert an element b) Delete an element</li><li>c) Search an element</li></ul>                     | 3 HRS            | 3  |
| P10 | Develop the following sorting algorithm:<br>a)Bubblesort b)Selectionsort c)InsertionSort d)Merge<br>sort                                                                    | 3 HRS            | 3  |
| P11 | Develop the following sorting algorithm:<br>a)Quick sort b)Heap sort c)Shell sort                                                                                           | 3 HRS            | 3  |
| P12 | Develop the following searching algorithm:<br>Linear Search, Binary Search and Interpolation search                                                                         | 3 HRS            | 3  |
|     | Total                                                                                                                                                                       |                  | 40 |
|     |                                                                                                                                                                             | University Exams | 60 |

# f) Overall Course Attainment Target

7

| Attainment Level   | Inference                                                               | Marks |
|--------------------|-------------------------------------------------------------------------|-------|
| Attainment Level 1 | 40% of the students have attained more than the target level of that CO | 1     |
| Attainment Level 2 | 50% of the students have attained more than the target level of that CO | 2     |
| Attainment Level 3 | 60% of the students have attained more than the target level of that CO | 3     |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

## **Overall Course Attainment Target**

(70% of university and 30% of the internal exam) will be = Attainment Level 3

Target has been set on the basis of last year's performance / result by the students, student quality this year and difficulty level of the course.

#### g )Mapping of Course Outcomes and Program Outcomes:

| Course   |    |    |    |    | Prog | ram C | outcor | nes |    |     |     |     | PS | Os |
|----------|----|----|----|----|------|-------|--------|-----|----|-----|-----|-----|----|----|
| Outcomes | 1. | 2. | 3. | 4. | 5.   | 6.    | 7.     | 8.  | 9. | 10. | 11. | 12. | 1. | 2. |
| CS302.1  | 1  | 1  |    |    |      |       |        |     |    |     |     |     | 1  | 1  |
| CS302.2  | 2  | 2  |    |    | 1    |       |        |     | 2  |     |     |     | 1  | 1  |
| CS302.3  | 2  | 2  |    |    | 2    |       |        |     | 2  |     |     | 1   | 1  |    |
| CS302.4  | 2  | 2  |    |    | 2    |       |        |     | 2  |     |     | 1   | 1  |    |
| CS302.5  | 2  | 3  |    |    | 2    |       |        |     | 2  |     |     | 1   | 1  |    |
| CS302    | 2  | 2  |    |    | 2    |       |        |     | 2  |     |     | 1   | 1  | 1  |

- CO1 to CO5 satisfies application of knowledge of mathematics and science in solving engineering problems and problem analysis. (PO1, PO2).
- CO2 to CO5 partially satisfies modern engineering and IT tools. (PO5).
- CO2 to CO5 minimally satisfies the individual and team work. (PO9).
- CO3 to CO5 minimally satisfies the lifelong learning. (PO12).
- CO1 to CO5 satisfies application of knowledge of mathematical foundations, programming skills and algorithm etc.(PSO1).
- CO1 and CO2 minimally satisfies PSO2

## h) Delivery Methodology:

| Outcome  | Method                | Supporting Tools           | Demonstration            |
|----------|-----------------------|----------------------------|--------------------------|
| CS 302.1 | Structured, Partially | Black Board ,NPTEL         | Describe the basic       |
|          | Supervised            | videos                     | algorithm and asymptotic |
|          |                       |                            | notations.               |
| CS 302.2 | Structured, Partially | Black Board, C programming | Describe the different   |
|          | Supervised            |                            | types of linked list and |
|          |                       |                            | their implementations.   |
| CS 302.3 | Structured, Partial   | Black Board, C             | Demonstrate applications |
|          | Supervised            | programming                | of stack and queue.      |

| CS 302.4 | Structured, Partial | Black Board, C           | Implement Non-linear    |
|----------|---------------------|--------------------------|-------------------------|
|          | Supervised          | programming, Power       | data structures using   |
|          |                     | point slides             | linear data structures. |
| CS 302.5 | Structured, Partial | Black Board, C           | Implementdifferenttypes |
|          | Supervised          | programming, Power point | of sorting, searching   |
|          |                     | slides                   | problems.               |

# i) Assessment Methodology:

| Assessment Tool | Outcomes     |        |         |              |         | Specific Question aligned to the<br>Outcome                                                                     |
|-----------------|--------------|--------|---------|--------------|---------|-----------------------------------------------------------------------------------------------------------------|
|                 | CS302.1      | CS02.2 | CS302.3 | CS302.4      | CS302.5 |                                                                                                                 |
| FIRST INTERNAL  | $\checkmark$ | V      | V       | √            |         | Writeanalgorithmtoreversea linked list in reverse order.                                                        |
| SECOND INTERNAL |              |        |         | $\checkmark$ | V       | Draw a max heap from the below<br>list:12,11,7,3,5,9,2,10                                                       |
| ASSIGNMENT      | $\checkmark$ |        | ~       | V            | ~       | Translating the following infix expression<br>into postfix expression using algorithm:<br>A+(B*C-(D/(E+F))*G)*H |
| QUIZ            | $\checkmark$ | V      | V       | V            | V       | <pre>function of C is used to allocate a block of memory. a)malloc() b)calloc() c)free() d)realloc()</pre>      |
| LABORATORY      |              |        |         |              |         | Write a program to implement singly linked list.                                                                |

# A. Weekly Lesson Plan

10

| Week | Lectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tutorial              | Laboratory                                                                  | Assignment/Quiz |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------|
| 1    | Discussion on course outcome and program<br>outcome<br>Introduction:<br>Remembering C programming language. Concepts of<br>data structures: a) Data and data structureb)AbstractData<br>Type andData Type. Algorithms and programs, basic idea<br>of pseudo- code.<br>Linear Data Structure: Array- Insertion, Deletion,<br>Traversing, row major, column major, Sparse matrix - its<br>implementation and usage<br>Linear Data Structure: Singly Linked List-<br>Definitions, Operations- Create, Traverse,<br>Insertion | ReviewofC<br>Language | Implement C<br>programming<br>using function<br>and structure<br>technique. | Quiz1           |
| 2    | <ul> <li>Linear Data Structure: Singly Linked List-<br/>Deletion, Reverse, Traverse(in reverse<br/>order),Sorting, Searching</li> <li>Linear Data Structure: Stack-Definitions,<br/>operations (push, pop, traverse). Implementations<br/>stack using array and linked list, Polish notations</li> </ul>                                                                                                                                                                                                                  | Array                 | Array(P1)                                                                   | Assignment1     |
| 3    | Conversion -infix to postfix, Evaluation of postfix<br><b>Principles of recursion</b> – use of stack, differences<br>between recursion and iteration, tail recursion, Applications<br>- The Tower of Hanoi, Eight Queen puzzle problem<br><b>Linear queue -</b> (Definition, implementation using<br>array and Linked List)                                                                                                                                                                                               | Single<br>Linked List | Singly Linked<br>list(P2)                                                   | Assignment1     |

| 4 | Circularqueue-(Definition,<br>implementationusing array and Linked List)DoubleEnded<br>Endedqueue-(Definition,<br>implementation using array)                                                                                                                                                                                                                                                                                                   | Stack<br>&<br>Recursion               | Stack<br>&<br>Recursion (P3)                                             | Assignment1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|-------------|
| 5 | DoublyLinkedList-Definitionsandoperations(create, traverse, insertion, deletionCircularLinkedList-Definitionsandoperations(create, traverse, insertion, deletion)                                                                                                                                                                                                                                                                               | Queue                                 | Queue (P4 & P5)                                                          |             |
| 6 | <ul> <li>Polynomial and Applications using array and linked list</li> <li>Nonlinear Data structures- Trees :Basic terminologies, forest, tree representation (using array and linked list),Binary trees - binary tree traversal (pre-, in-, post-order)</li> <li>Binary search tree-Definition and operations (create, insert,traverse,search),BSTdeletion</li> </ul>                                                                           | Double and<br>Circular<br>Linked List | Double and<br>Circular Linked<br>List(P6&P7)                             | Assignment1 |
| 7 | <ul> <li>Expression tree, Threaded binary tree (left, right, full) - non-recursive traversal algorithms using threaded binary tree</li> <li>Height balanced binary tree – AVL tree (insertion, deletion with examples only).</li> <li>B- Trees – operations (insertion, deletion with examples only).</li> <li>Basic idea of pseudo-code, Algorithm efficiency and analysis, time and space analysis of algorithms – order notations</li> </ul> | Binary<br>search tree                 | Polynomial<br>addition and<br>multiplication<br>using linked<br>list(P8) | Assignment2 |

11

|      | <b>Sorting Algorithms :</b> Bubble sort and its optimizations, Insertion sort and analysis of time complexity                                                                                                                                                     |                             |                            | Assignment2 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-------------|
| 8    | Selection sort, Merge sort and analysis of time complexity<br>Quick sort, Shell sort and analysis of time complexity<br>Heap sort (concept of max heap), Radix sort and analysis of                                                                               | B –Tree<br>&<br>AVL Tree    | Binary search tree<br>(P9) |             |
| 9    | time complexity Searching : Sequential , Binary search, Interpolation searchand its time complexity Non-linear Data structure: Graphs- definitions and concepts (directed/undirected graph, weighted/un- weighted edges cub graph, degree out vertex/orticulation | Asymptotic<br>notations and | Sorting(P10)               | Assignment2 |
|      | weighted edges, sub-graph, degree, cut-vertex/articulation<br>point, pendant node, clique, and complete graph)<br>Graphs: Definitions (connected components – strongly<br>connected component, weakly connected component,                                        | Sorting<br>Algorithms       |                            | Assignment2 |
| 10   | path, shortest path, isomorphism)<br>Graph representations storage implementations<br>– adjacency matrix, adjacency list, adjacency multi-list.,<br>connectivity – Depth-first search (DFS),                                                                      | Searching                   | Sorting(P11)               |             |
| 11   | <ul> <li>Breadth-first search (BFS) – concepts of edges used in DFS and BFS, applications.</li> <li>Minimal spanning tree – Prim's algorithm (basic idea of greedy methods).</li> <li>Hashing : Hashing functions, collision resolution techniques</li> </ul>     | Graphs                      | Searching(P12)             |             |
| 2 12 | Discussion on Previous Question Paper on WBUT<br>Revision Lesson                                                                                                                                                                                                  | Hashing                     |                            |             |

# B. Daily Lesson Plan (Repeat format for each unit)

# UNIT: 1

#### Title : Introduction

#### Date: 14/07/15 Day: Tuesday(11.40 a.m—13.20 p.m)

# CONTENTS

1)Discussion on program outcome, Introduction to C programming language with example 2)Define the Data

structure

3) Classify DataStructure

4) Explain Algorithm with example

Unit Objectives: Student can able to recall C programming. Broad

Objectives of the unit are:

1. Concepts of using pointer function and structure.

2. Data structure definition and classifications.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. **Describe** function, structure? (Level 2)
- 2. What do you **understand** by Data Structure? (Level 2)
- 3. Classify data structure with examples. (Level 5)
- 4. **Describe** characteristics of algorithms. (Level 2)
- 5. **Compare** between linear and non linear data structure. (Level 4)

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. What is the utilization of the following program? main()

int a[]={0,1,2,3,4}; int k, \*p; for(p=a, k=0;p+k<=a+4; p++, k++) printf(" %d ", \*(p+k));

QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1)..... function of C is

used to allocate a block of memory.

a)malloc() b)calloc()

13

}

# UNIT: 2

# Title : Array and Its Operation

Date: 15/07/15 Day: Wednesday(11.40a.m---12.30 p.m)

# CONTENTS

1) Define Array data structure.

2) Insert an element in to Array.

3) Delete an element from Array.

4) Memory representation: row major and column major

Topic/Unit/Chapter Objectives: Student can able to understand about linear data structure. Broad Objectives of the

chapter/topic are:

1. Concepts of linear data structure.

2. Implement the algorithm to insert and delete an element from array.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Describe** array? (Level1)

2. **Explain**thealgorithmforinsertanddeleteoperationonarraydatastructure.(Level4) 3.**Explain**with

example on row major and column major. (Level 4)

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1) Let A be a two dimensional array declared as A[1...10][1...15] of integer. Assuming that each integer takes one memory locations the array is stored in row major order and the first element of the array is stored at location 100, what is the address of the element A[i][j]?

QUIZ: related to Topic objective and outcome (new quiz with real world examples)

- 1) Thenumberofelementsniscalled the length ------ of the array.
- a) UpperBound c) LowerBound
- b) Size d)Variable

2) Arrays are best data structures

a) for relatively permanent collections of data b) for the size of the structure and the data in the

c) for both of above situation

structure are constantly changing d) for none of above situation

LABORATORY EXPERIMENT: related to the Topic objective and outcome

1) Insert one element into array and delete one element from array.

# UNIT: 2

# Title :Tutorial I

Date: 17/07/15 Day: Friday(02.10 p.m---03.00p.m)

# CONTENTS

1) Write a C program to merge two arrays.

2) What is the difference between linear and non-linear data structure?

# UNIT: 3

# Title:SingleLinked List

Date: 21/07/15 Day: Tuesday(11.40 a.m-13.20 p.m)

1) Definition of Linked list and its types.

2) Representation of linked list.

3) Operations of Single Linkedlist (Create, Traverse, Insertion)

Unit Objectives: Student can able to understand about single linked list. Broad Objectives of the

chapter/topic are:

15

1. Student can able to **understand** linked list. (Level 2)

2. How to **create** a single linked list? (Level 6)

3. **Compare** between array and linked list. (Level 4)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Explain an algorithm for Creation of single linked list. (Level 4) 2. Explain the

algorithmofTraversalofsinglelinkedlist.(Level4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Draw a single link list which has 5 nodes.

LABORATORY EXPERIMENT: related to the Topic objective and outcome

1) Implement the following operation of linked list a)Create list b)Traversal

c)Insertfirst

d)insert last

e)Insert Anywhere

# UNIT: 3

#### Title: Single Linked List

Date: 22/07/15 Day: Wednesday(11.40 a.m—12.30 p.m)

# CONTENTS

OperationsofSingleLinkedlist.(Deletion,Searching,Sorting, Reversing)

UnitObjectives: Student canable to **understand** about operation of single linked list Broad Objectives

of the chapter/topic are:

16

1. Student can able to **understand** single linked list. (Level 2)

2. Howto**explain** the algorithm to Insert and Delete an element from a single linked list? (Level 4)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. **Explain** an algorithm for Insertion and deletion of single linked list. (Level 4)
- 2. **Explain** the algorithm of searching the element from single linked list. (Level 4)
- 3. **Explain** an algorithm for Sorting of single linked list. (Level 4)
- 4. **Explain** to Reverse single linked list. (Level 4)
- 5. **Explain** to traverse linked list in reverse order. (Level 4)

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

- 1. Write an algorithm of finding the middle node form a single linked list.
- 2. Binary search is possible or not to find a node from a linked list.

LABORATORY EXPERIMENT: related to the Topic objective and outcome.

1) Implement the following operation of single linked list a) Delete first b) delete last c) Delete anywhere

delete lust

d)Sorting

e)Reversing

f)Traverse(in reverse order)

g) Search the element from list

# UNIT: 3

# Title:Tutorial-II

Date: 24/07/15 Day: Friday(02.10 a.m-03.00 p.m)

# CONTENTS

- 1) What is the difference between array and linked list?
- 2) Find the middle element from a single link list without counting the number of node? (If number of node is ODD then one middle element, if EVEN then two middle element)

3) Isitpossibletofind(searching)anodefromasinglelinklistusingBINARYsearch(considerallthe element in sorted order)

# UNIT:3

Title:LinearDataStructure(Stack) Date:

28/07/15 Day: Tuesday

# CONTENTS

1)STACK-Definitions, operations 3)Implementations

using array 4)Implementations using linked list

5)Application ofStack

17

6)Arithmetic notation(prefix, postfix, infix)

UnitObjectives:Studentcanabletounderstand aboutoperationofstack Broad

Objectives of the chapter/topic are:

| 1. Able to <b>understand</b> about Stack Data Structure                          |                                                                    |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 2. Student can able to <b>understand</b> stack operation                         | (PUSH and POP)                                                     |  |
| 3. Able to understand about how to represent prefix, postfix, and infix notation |                                                                    |  |
| Once the student has completed this topic/ chap                                  | oter he/she will be able to answer following questions/perform the |  |
| following activities (Performance Criteria/Indicators v                          | with Levels of Bloom's Taxonomy):                                  |  |
| 1. What do you <b>understand</b> by push and pop operation                       | on in Stack? (Level 2)                                             |  |
| 2. <b>Finding</b> the over flow and under flow condition for                     | r Stack? (Level 4)                                                 |  |
| 3. <b>Explaining</b> the real life example of stack? (Level 4)                   | 4)                                                                 |  |
|                                                                                  |                                                                    |  |
| HOMEWORK:relatedtoTopicobjectiveandoutcome                                       | easexpressedintermsofindicators/criteria                           |  |
| 1. AsinglearrayA[1MAXSIZE]isusedtoimple                                          | ement stacks. Two stacks grow from opposite ends                   |  |
|                                                                                  | p2)pointtothelocationofthetopmostelementin eachstacks.ifthespaceis |  |
| tobeusedefficiently.sowhatistheSTACKF                                            |                                                                    |  |
| QUIZ: related to Topic objective and outcome (new                                |                                                                    |  |
| 1. Stack is also called as                                                       |                                                                    |  |
| a) Lastinfirstout                                                                | b) First in last out                                               |  |
| c)Lastinlastout                                                                  | d) First in first out                                              |  |
|                                                                                  |                                                                    |  |
| 2. Inserting an item into the stack when stack is not full                       | is called Operation and deletion of                                |  |
| item form the stack, when stack is not empty is called                           | operation.                                                         |  |
| a) push,pop                                                                      | b) pop,push                                                        |  |
| c)insert,delete                                                                  | d) delete, insert                                                  |  |
|                                                                                  |                                                                    |  |
|                                                                                  |                                                                    |  |
| LABORATORY EXPERIMENT: related to the To                                         | pic objective and outcome.                                         |  |
| 1. Implement Stack Operation in C programmi                                      | ng language using array and linked list.                           |  |
|                                                                                  |                                                                    |  |
|                                                                                  |                                                                    |  |
|                                                                                  |                                                                    |  |
|                                                                                  |                                                                    |  |

UNIT: 4

Title:LinearDataStructure(STACK)Date:

29/07/15 Day: Wednesday

CONTENTS

3)Convert infix to post fix expression(with examples)

4)Evaluation of post fix expression

Topic/Unit/Chapter Objectives: Student can able to understand stack data structure Broad Objectives

of the chapter/topic are:

- 1. Student can able to understand how to convert infix to post fix expression
- 2. Student can able to understand how to evaluate post fix expression

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Describe** polish notation? (Level 2)

2. What do you **understand** by reverse polish notation? (Level 2)

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

- 1. Translating the following infix expression into post fix expression A+(B\*C- (D/(E+F))\*G)\*H
- 2. Evaluate the following Post fix expression(with single digit operand).  $823^{2} + 5$ 1 \* -

Identify the Top two elements of the stack after the first \* (operator) is evaluated.

| UNIT: 4                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------|
| Title :Tutorial-III                                                                                                                |
| Date: 31/07/15 Day: Friday                                                                                                         |
| CONTENTS                                                                                                                           |
|                                                                                                                                    |
| <ol> <li>Convert the following arithmetic expression infix to post fix expression i)A+B*D+(G-H)</li> <li>ii)F/G*(M*N+A)</li> </ol> |
| 2. Evaluate the following post fix expression. i) $+7$ 9-4                                                                         |
| 6<br>ii) /+2 4*-6 3 1                                                                                                              |
| 3. The following sequence of operation is perform on a stack :                                                                     |
| <pre>push(1),push(2),pop(),push(5),pop(),push(4),pop(). What are sequence of popped out values?</pre>                              |

# UNIT: 5

Title : Recursion

Date: 04/08/15 Day: Tuesday

# CONTENTS

- 1) Recursion.
- 2) Types of Recursion.
- 3) Tower of Hanoi.
- 4) Eight Queen Puzzle Problem.

Unit Objectives: Student can able to understand about recursion and its classification. Broad Objectives of

the chapter/topic are:

- $1. \ \ Student can able to understand How to apply recursion technique in real life application.$
- 2. Student can able to understand how to draw recursive tree.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Compare between Recursion Vs Iteration. (Level 4)

```
2. Describe Tail recursion? (Level 2)
```

1. Explain the algorithm of Tower of Hanoi. (Level 4) 2.Outlinea

recursiveTreeforTowerofHanoiforn=3.(Level4)

3. Explain the algorithm of 8 queen puzzle problem. (Level 4)

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria and outcome

1) int ABC( int n , int m )

if(n==0) return(m+1);

else if(m==0&&n>0)

```
return ABC(n-1,1);
```

```
else return ABC(n-1,ABC(n,m-1));
```

}

2) Draw a recursive Tree for Tower of Hanoi for n =4

QUIZ: related to Topic objective and outcome (new quiz with real world examples)

# NA

LABORATORY EXPERIMENT: related to the Topic objective and outcome

- $1. \quad Construct C programming language for GCD of two number recursive techniques.$
- $2. \quad Construct C programming language for Fibonacci series of two number using recursion.$
- $\label{eq:construct} 3. \quad Construct C programming language for tower of Hanoi in recursive technique.$
- $\label{eq:construct} 4. \quad Construct C programming language for eight queen puzzle problem in recursive technique.$

# UNIT: 4

Title:LinearDataStructure(LinearQUEUE) Date:

05/08/15 Day: Wednesday

CONTENTS

1) Linear Queue-Definitions

2) OperationofQueue(insertatfront,deleteatrear)

3)Implementationusingarrayandlinkedlist

Topic/Unit/Chapter Objectives: Student can able to understand queue data structure Broad Objectives of

the chapter/topic are:

1. Able to understand about linear queue Data Structure

2. Student can able to understand linear queue operation (insert at front, delete at rear)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Discuss** the operation in queue? (Level 2)

 $2. \ \textbf{Explain} \ the overflow and under flow condition for Queue data structure? (Level 4) \ 3. What do you$ 

understand by the real life example of queue? (Level 2)

| HOME WORK: related to Topic objective                                                      | HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria |  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| 1. What is the difficulties of linear q                                                    | 1. What is the difficulties of linear queue and how overcome it?                               |  |  |  |
|                                                                                            |                                                                                                |  |  |  |
| QUIZ: related to Topic objective and ou                                                    | tcome (new quiz with real world examples)                                                      |  |  |  |
|                                                                                            |                                                                                                |  |  |  |
| 1. Which data structure allows deleting da                                                 | ta elements from and inserting at rear?                                                        |  |  |  |
| A.Stack                                                                                    | B. Queues                                                                                      |  |  |  |
| C.Tree                                                                                     | D. LinkedList                                                                                  |  |  |  |
| 2. Ais a data structure that organizes da                                                  | ta similar to a line in the supermarket, where the first one in                                |  |  |  |
| line is the first one out.                                                                 |                                                                                                |  |  |  |
| A.Queue1                                                                                   | B. Stacks                                                                                      |  |  |  |
| C.Bothofthem                                                                               | D. Neither of them                                                                             |  |  |  |
| LABORATORY EXPERIMENT: related to the Topic objective and outcome                          |                                                                                                |  |  |  |
| 1. Implement Linear Queue Operation in C programming language using array and linked list. |                                                                                                |  |  |  |
|                                                                                            |                                                                                                |  |  |  |

| UNIT: | 4&5 |
|-------|-----|
|-------|-----|

Title : Tutorial-IV Date:

07/08/15 Day: Friday

UNIT:4

TitleLinearDataStructure(CircularQUEUE) Date:

11/08/15 Day: Tuesday

CONTENTS

1) CIRCULAR Queue

2) Operation of CURCULAR Queue(insert at front, delete at rear, traverse)

3)Implementation using array

4) DEQUEUE-Definitions

| 5)Operation of DE QUEUE(Insert left, Delete left)                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Unit Objectives: Student can able to understand Circular queue data structure Broad Objectives of the                                                                                                                               |  |  |  |
| chapter/topic are:                                                                                                                                                                                                                  |  |  |  |
| 1. Able to understand about circular queue Data Structure                                                                                                                                                                           |  |  |  |
| 2. Student can able to understand circular queue operation (insert at front, delete at rear)                                                                                                                                        |  |  |  |
| 3. Student can able to know how it use full in real life.                                                                                                                                                                           |  |  |  |
| 4. Able to understand about Double ended queue Data Structure                                                                                                                                                                       |  |  |  |
| 5. Student can able to understand Double ended queue operation (insert at left, delete at left)                                                                                                                                     |  |  |  |
| Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):                            |  |  |  |
| 1. <b>Discuss</b> the operation in Circular queue? (Level 2)                                                                                                                                                                        |  |  |  |
| 2. <b>Describe</b> the overflow and underflow condition for Circular Queue data structure? (Level 2)                                                                                                                                |  |  |  |
| 3. <b>Outline</b> the real life example of queue. (Level 4)                                                                                                                                                                         |  |  |  |
| 4. <b>Describe</b> the Over flow and Under flow condition of Deque. (Level 2)                                                                                                                                                       |  |  |  |
| 5. Explain the algorithm for traversal of deque. (Level 4)                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                                                                                     |  |  |  |
| HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria                                                                                                                                      |  |  |  |
| 1. Take a circular queue <b>CQ</b> which is allocated 5 memory cells starting from <b>CQ[0] to CQ[4]</b> .Perform the following operations oneby one onit and write down <b>front</b> and <b>rear</b> value in each and every step. |  |  |  |
| (i) Insert 23,12,45,33 (ii) Delete two elements (iii) Insert 43,56 (iv) Delete one element (v) Insert 10                                                                                                                            |  |  |  |
| QUIZ: related to Topic objective and outcome (new quiz with real world examples)                                                                                                                                                    |  |  |  |
| 1. Let que ue be a circular array having size 5. Now front=5 and rear=5 indicates that the que ue                                                                                                                                   |  |  |  |
| (a) isempty (b)isfull (c) contains only one element (d) none of these                                                                                                                                                               |  |  |  |
| 2. A linearlist in which elements can be added or removed at either end but not in the middle, is known as                                                                                                                          |  |  |  |
| (a) Queue (b)Deque (c)Stack (d) Tree                                                                                                                                                                                                |  |  |  |
| 3. Identify the data structure which allows deletions at both ends of the list but insertion at only one end.                                                                                                                       |  |  |  |
| A.Inputrestricteddequeue B. Output restricted qequeue                                                                                                                                                                               |  |  |  |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

LABORATORY EXPERIMENT: related to the Topic objective and outcome

- 1. Implement Circular Queue Operation in Cprogramming language using array.
- 2. Implement DOUBLEENDED Queue Operation in C programming language using array (insert left and delete left)

# TOPIC/UNIT/CHAPTER: 3

TitleLinearDataStructure(DE-QUEUE) Date:

12/08/15 Day: Wednesday

# CONTENTS

1)DE-QUEUEOPERATION (Insertright, Deleteright) 2)Traverse

3)Priority Queue

Topic/Unit/Chapter Objectives: Student can able to understand De Queue data structure Broad Objectives of

the chapter/topic are:

1. Able to understand about Operation of Double ended queue Data Structure

2. StudentcanabletounderstandDoubleendedqueueoperation(insertatright,deleteatright)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Produce** the algorithm for insert right? (Level 3)

2. **Outline**the over flow and under flow condition for insert right and delete right? (Level 4)

3. What do you **understand** by Priority Queue? (Level 2)

LABORATORY EXPERIMENT: related to the Topic objective and outcome

**1.** Implement DOUBLE ENDED Queue Operation in C programming language using Array ( insert left and delete left)

24

UNIT: 3

# Title :Tutorial-IV

## Date: 14/08/15 Day: Friday

# 1. **Describe** the Over flow and Under flow condition of Deque.

2. **Propose**an algorithm for traversal of deque.

# UNIT: 3

Title:Linear Data Structure(Circular Linked List) Date:

19/08/15 Day: Tuesday

# CONTENTS

1) CircularLinkedlist. (Definition)

2) Operation of circular linked list.

3) Double Linkedlist.(Definition)

4) Operation of Double linked list (Create, Traverse)

Topic/Unit/Chapter Objectives: Student can able to understand Operation of De Queue data structure Broad Objectives of the

chapter/topic are:

- 1. Student can able to **understand** Circular linked list.
- 2. How to create, traverse a circular linked list.
- 3. How to Insert and Delete an element from a circular linked list?
- 4. Student can able to **understand** double linked list.
- 5. **How** to Create and traverse the double linked list?
- 6. Write down the advantages of doubly linked list over singly linked list.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Explain** an algorithm for Creation and traversal of Circular linked list. (Level 4)

2. **Explain** the algorithm for insertion and deletion of Circular linked list. (Level 4)

3. Explain analgorithm for Creation and traversal (forward and back word direction) of Double linked list. (Level 4)

4. Compare between singly linked list and doubly linked list. (Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1) Draw circular linked lists which have 5 nodes. 2) Draw a double linked list which has 5 nodes. QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The disadvantage in using a circular linked list is..... A. It is possible to get into infinite loop B. Last node points to first node. C.Timeconsuming D. Requires more memory space LABORATORY EXPERIMENT: related to the Topic objective and outcome Implement the following operation of circular linkedlist a)Create 1. b)Traverse c)Insertfirst d)insert last e)Deletefirst f)delete last

# TOPIC/UNIT/CHAPTER: 3

Title: Doubly linked list Date:

20/08/15 Day: Wednesday

# CONTENTS

Operations of Doubly linked list(Insert, Delete)

Topic/Unit/Chapter Objectives: Student can able to **understand** about Circular linked list and its operation.

Broad Objectives of the chapter/topic are:

1. How to Insert and Delete an element from a double linked list.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Explain** an algorithm for insertion of Double linked list. (Level 4)

2. **Explain** an algorithm for deletion of Double linked list. (Level 4)

#### LABORATORY EXPERIMENT: related to the Topic objective and outcome

1)Implement the following operation of double linked list a)Create

|                             | b)Traverse    |                |                                |
|-----------------------------|---------------|----------------|--------------------------------|
| c)Insertfirst               | d)insert last |                |                                |
| e)Insertatspecifiedposition |               | f)Delete first | g)Delete at specified position |
| h)delete last               |               |                |                                |

# TOPIC/UNIT/CHAPTER: 3

Title:Tutorial-VI

Date: 22/08/15 Day: Friday

1. How to delete node at beginning, ending and at specific position?

# UNIT: 3

Title: Linear Data Structure(Application of linked list) Date:

25/08/15 Day: Tuesday

# CONTENTS

1. Representation of Polynomial expression using array

2. Representation of Polynomial expression using linked list

3. Polynomial addition using linked list

4. Polynomial multiplicationusing linked list

Topic/Unit/Chapter Objectives: Student can able to **understand** about double linked list and its operation.

Broad Objectives of the chapter/topic are:

1. Student can able to **understand** polynomial addition.

2. Student can able to **understand** polynomial multiplication.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Explain** an algorithm for Polynomial addition. (Level 4)

2. Explain an algorithm for Polynomial multiplication. (Level 4)

LABORATORY EXPERIMENT: related to the Topic objective and outcome

- 1. Implement the following operation of linked list
- a. Polynomial addition.

28

b. Polynomial multiplication

| UNIT: 6                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title : NON -Linear Data Structure( Tree) Date:                                                                                                                                                          |
| 26/08/15 Day: Wednesday                                                                                                                                                                                  |
| CONTENTS                                                                                                                                                                                                 |
| 1.Define Tree and its terminology 2.Definition                                                                                                                                                           |
| of binary tree with examples                                                                                                                                                                             |
| 3. Types of Tree( complete, strictly, extended )                                                                                                                                                         |
| 4. Expression Tree                                                                                                                                                                                       |
| Topic/Unit/ChapterObjectives:Studentcanabletounderstand aboutoperationofdoublelinkedlist Broad Objectives of the                                                                                         |
| chapter/topic are:                                                                                                                                                                                       |
| 1. Student can able to <b>understand</b> Tree.                                                                                                                                                           |
| 2. Concepts of binary tree                                                                                                                                                                               |
| Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy): |
| 1. Whatdo you <b>understand</b> by complete binary tree? (Level 2)                                                                                                                                       |
| 2. <b>Describe</b> the following terms : Degree, terminal, root node, height, child (Level 2)                                                                                                            |
|                                                                                                                                                                                                          |

| HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria NA                |          |         |       |   |
|-----------------------------------------------------------------------------------------------------------------|----------|---------|-------|---|
| 1) Prove that $n_0 = n_2+1$ where no is the terminal and n2 is non terminal node degree 2.                      |          |         |       |   |
| QUIZ: related to Topic objective and outcome (new quiz with real world examples)                                |          |         |       |   |
| 1. Inarray representation of binary tree, if the index number of a child node is 6 then the index number of its |          |         |       |   |
| parent node is                                                                                                  |          |         |       |   |
| (a) 2                                                                                                           | (b)3     | (c)4    | (d) 5 |   |
|                                                                                                                 |          | UNIT: 3 |       |   |
|                                                                                                                 |          |         |       |   |
| Title :Tutorial-VII Date:                                                                                       |          |         |       |   |
| 28/08/15 Day: Friday                                                                                            |          |         |       |   |
| 1. Construct an Expression tree for this following expression: (A+(B-C)) *                                      |          |         |       |   |
| ((D-E)/(F+G-H))                                                                                                 |          |         |       |   |
| 2. Consider the following Preorder and In order traversals of a binary tree.                                    |          |         |       |   |
| Preorder :                                                                                                      | ABDGHEIG | CFJK    |       |   |
| Inorder :                                                                                                       | GDHBEIAC | JFK     |       | 5 |
|                                                                                                                 |          |         |       |   |

| UNIT | : | 6 |
|------|---|---|
|      |   |   |

Title:NON-LinearDataStructure(BST) Date:

01/09/15 Day: Tuesday

# CONTENTS

- 1. Definitions of BST
- 2. Construct BST from in order, pre order and post order traversal.
- 3. BST operations using algorithms [Create, Traverse (Recursive and non-recursive)]

Topic/Unit/ChapterObjectives:Studentcanabletounderstand about application of link list Broad Objectives of the

chapter/topic are:

1. Student can able to know the operation of binary search tree.

2. Student can able to know how to construct BST from pre order, post order and in order.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Explain the Algorithm for finding number of node from a BST.(Level 4)

- 2. Explain an algorithm for finding in order predecessor of root node from non-empty BST. (Level 4)
- 3. Describe BST. (Level2)
- 4. Write an algorithm for create and traverse BST. (Level 1)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Write an algorithm inorder traversal of BST in non-recursive way.

LABORATORY EXPERIMENT: related to the Topic objective and outcome

Implement the following BST Operation

 a) Create
 b) Traverse(preorder, in order, post order in recursive way)
 c) Traverse(preorder, in order in non-recursive way)

#### UNIT: 6

Title: NON - Linear Data Structure (BST) Date:

02/09/15 Day: Wednesday

## CONTENTS

BST operations using algorithms(Insertion)

Topic/Unit/ChapterObjectives:Studentcanableto**understand** aboutnonlineardatastructurelikeTree and itsterminology.

Broad Objectives of the chapter/topic are:

30

1. How to insert a node in recursive as well as non-recursive way in a BST?

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Explain the Algorithm to insert a node in a BST.(Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1.Insert following

elements in BST:44,12,34,78,90,6,22,87

Implement the following BST Operation

 a) Insert the node using recursive and non-recursive way

# UNIT: Title : Tutorial-VIII Date: 04/09/15 Day:Friday 1) Write an Algorithm for finding in order successor of root node. 2) Traverse the given tree using Inorder, Preorder and Postorder traversals. Given tree: B C C C C C J J

|  | UNIT: | 6 |
|--|-------|---|
|--|-------|---|

Title: NON-Linear Data Structure(BST) Date:

08/09/15 Day: Tuesday

CONTENTS

BST operations using algorithms(Deletion)

31

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

Topic/Unit/Chapter Objectives: Explanation of operation of binary search tree. Broad Objectives

of the chapter/topic are:

1. Able to understand the Algorithm for deleting node from a BST.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Explain the Algorithm for deleting node from a BST.(Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Write an Algorithm for finding in order successor of root node.

LABORATORY EXPERIMENT: related to the Topic objective and outcome

1. Implement the following BST Operation Delete the node

# UNIT: 6

Title: NON - Linear Data Structure (Threaded Binary Tree) Date:

09/09/15 Day: Wednesday

## CONTENTS

1. Threaded Binary Tree

2. Classification of Threaded Binary Tree.

3. Traversal of Threaded Binary tree.

Topic/Unit/Chapter Objectives: Explanation of operation of threaded binary tree. Broad Objectives

of the chapter/topic are:.

1. Student can able to **understand** about threaded binary tree.

2. Student can able to know the classification of Threaded Binary tree

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Whatdo you **understand** by Threaded Binary tree? (Level 2)

2. **Implement**an algorithm for In order Traverse of Threaded Binary Tree? (Level 3)

 3. Compare the efficiency between threaded binary tree and BST? (Level 4)

 HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

 1. Draw a Full Threaded Binary Tree which has seven nodes.

 QUIZ: related to Topic objective and outcome (new quiz with real world examples)

 1. IfabinarytreeisthreadedforinordertraversalarightNULLlinkofanynodeisreplaced by the address of its

 (a) successor
 (c)root

 (d)own

# UNIT: 6

Title :Tutorial-IX

Date: 11/09/15 Day: Friday

1. Construct the Binary Search Tree by using the following traversals: Inorder:

DCKEAHBQJI

Postorder: DKECHQJIBA

2. Draw the expression tree for the following expressions-

i) A\*B+C/D-E\$F+G\*H

ii)  $a \$ b + c - (d + e) / f \ast g + h$ 

UNIT: 6

Title:NON-Linear Data Structure (AVL tree) Date:

15/09/15 Day:Tuesday

# CONTENTS

- 1. AVL Tree-Definitions
- 2. Balance Factor
- 3. Operation of AVL Tree(Single rotations, Double rotations)

Topic/Unit/Chapter Objectives: Explanation of more efficient Data structure than binary search tree. Broad Objectives of the

chapter/topic are:

1. Student can able to **understand** about AVL tree.

2. Student can able to know the Operation of AVL tree.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. What do you **understand** by AVL tree? (Level 2)

2. **Complete** the full form of AVL? (Level 3)

3. Compare BST and AVL tree.(Level 4)

4. What do you **understand** by pivot node in AVL tree? (Level 2)

5. Whatdo you **understand** by Balance factor? (Level 2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Draw all the general form of rotation for insert in an AVL tree.

2. Insert the following keys in AVL tree and show the rotations.

8, 12, 9, 11, 7, 6, 66, 2, 1, 44

QUIZ: related to Topic objective and outcome (new quiz with real world examples)

12. A binary search tree whose left subtree and right subtree differ in hight by at most 1 unit is called .....

A.AVLtree

C.Lemmatree

B. Red-blacktree

D. None of the above

# TOPIC/UNIT/CHAPTER: 6

Title: NON-Linear Data Structure(AVL Tree) Date:

16/09/15 Day: Wednesday

## CONTENTS

Explain Ro R1 R-1 rotation for delete an element

Topic/Unit/Chapter Objectives: Explanation of more efficient Data structure than binary search tree. Broad Objectives of the

chapter/topic are:

1. Student can able to **understand** about rotation for delete a node from AVL tree

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Evaluate the time complexity of AVL Tree? (Level 5)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1. Draw all the general form of

rotation for delete an element from an AVL tree

# TOPIC/UNIT/CHAPTER: 6

Title: NON-Linear Data Structure(B Tree) Date:

30/09/15 Day: Tuesday

# CONTENTS

- **1.** Explain BTree.
- 2. Operation of B tree with example

Topic/Unit/Chapter Objectives: Explanation of deletion of element form B tree. Broad Objectives

of the chapter/topic are:

- 1. Student can able to **understand** about B Tree.
- 2. Student can able to **know** the Operation of B tree.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. **Describe** B Tree tree?(Level 2)
- 2. **Discuss** the element is to be insert into B- Tree? .(Level 2)
- 3. **Describe** an element is to be Deleted from B- Tree? (Level 2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

- 1. Insert The following element in to B Tree of order 4:4,7,1,4,22,9,11,55,33,88,77
- 2. Delete The following element in to B Tree of order 4 : 4,7,1,4,22,9,11,55,33,88,77

35

UNIT: 1

# Title : Algorithm efficiency and analysisand Sorting

Date: 01/10/15 Day: Wednesday

## CONTENTS

1) Define asymptotic notation.

2) Demonstrate the classification of asymptotic notation.

Topic/Unit/Chapter Objectives: Explanation of more efficient Data structure Broad

Objectives of the chapter/topic are:

1. Student can able to relate about Big O, Theta and Omeganotation.

2. Student can able to find complexity of an algorithm.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. Explain Big O, Theta, Omega notation.(Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

- 1. Prove that  $3n^2 + 7n = O(n^2)$
- 2. Prove that  $3n^2 + 7n = \Omega(n^2)$
- 3. Provethat $3n^2+7n=\Theta(n^2)$
- 4. Short notes on asymptotic notations.

QUIZ: related to Topic objective and outcome (new quiz with real world examples)

1. Which of the following shows the correct relationship among some of the more common computing times for algorithm?

(a)  $O(\log n) < O(n) < O(n^*\log n) < O(2^n) < O(n^2)$ 

(b)  $O(n) < O(\log n) < O(n^* \log n) < O(2^n) < O(n^2)$ 

(c)  $O(n) < O(\log n) < O(n^* \log n) < O(n^2) < O(2^n)$ 

(d)  $O(\log n) < O(n) < O(n^*\log n) < O(n^2) < O(2^n)$ 



UNIT: 9

Title : Searching

| Date: 06/10/15 Day: Tuesday                                                                                      |
|------------------------------------------------------------------------------------------------------------------|
| CONTENTS                                                                                                         |
|                                                                                                                  |
| 1) Searching-Linear Search, Binary search, Interpolation search                                                  |
| 2) Time complexity of Linear Search, Binary search, Interpolation search                                         |
| Topic/Unit/Chapter Objectives: Explanation of Sorting Broad Objectives                                           |
| of the chapter/topic are:                                                                                        |
| 1. Student can able to understand about linear searching and its time complexity                                 |
| 2. Student can able to understand about binary searching and its time complexity                                 |
| 3. Studentcanabletounderstandaboutinterpolationsearchinganditstimecomplexity                                     |
| Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the |
| following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):                          |
| 1. <b>Describe</b> searching? (Level2)                                                                           |
| 2. CompareBest, average and worst case time complexity of linear search. (Level 4) 3. Compare Best,              |
| averageandworstcasetimecomplexityofbinarysearch.(Level4)                                                         |
| a vorageana worsteasetimeeompromity oromaty search.(Le vor t)                                                    |
| HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria                   |
|                                                                                                                  |
| 1)Search an smallest element from a matrix                                                                       |
| QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The worst case time          |
| complexity of binary search is                                                                                   |
| (a) $O(n^2)$ (b) $O(n)$ (c) $O(\log n)$ (d) $O(n^*\log n)$                                                       |
| LABORATORY EXPERIMENT: related to the Topic objective and outcome                                                |
| 1) Implement linear search, binary search and interpolation search in C programming language                     |
|                                                                                                                  |
| UNIT: 9                                                                                                          |

Title :Sorting

Date: 07/10/15 Day: Wednesday

CONTENTS

- 1. Bubble, Insertionsort
- 2. Time Complexity Analysis

Topic/Unit/Chapter Objectives: Student can able to understand about algorithm and how analyze time complexity of an algorithm.

Broad Objectives of the chapter/topic are:

1. **Explain**Bubble, Insertion sort algorithm. (Level 4)

2. **Explain** the time complexity analysis. (Level 4)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. **Classify** the best, worst and average case time complexity of bubble sort. (Level 2)
- 2. **Classify** the best, worst and average case time complexity of insertion sort?(Level2)
- 3. **Describe** modified bubble sort?(Level 2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1.Draw the step of

Bubble sort for the following data element: 5,1,7,2,4,8

2.Draw the step of Insertion sort for the following data element : 5,1,7,2,4,8

QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The best case time

complexity of the bubble sort technique is

 $(a) O(n) (b) O(n^2) (c) O(n \log n) (d) O(\log n)$ 

2. The worst case time complexity of the insertion sort technique is

 $(a) O(n) (b) O(n^2) (c) O(n \log n) (d) O(\log n)$ 

LABORATORY EXPERIMENT: related to the Topic objective and outcome

1. Implementprogramforfollowingsortingalgorithm a)Bubblesort. b )Insertionsort

UNIT: 1& 6

Title :Tutorial-X

Date: 09/10/15 Day: Friday

1. Find time complexity of the following algorithm: for(i=0;i<n;i++)

for(j=i;j<n;j++)

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

for(k=j;k<n;k++)

s++;

2. Insert the following keys in the order given below to build them into an AVL tree:

9, 14, 32, 20, 5, 25, 46, 68.

3. Insert the following keys into a B-tree of order 3:p,q,r,d,h,m,l,s,k,n

#### UNIT: 8

#### Title:Sorting

Date: 14/10/15 Day: Tuesday

#### CONTENTS

Selection Sort, Merge sort
 Time Complexity Analysis

Topic/Unit/Chapter Objectives: Student can able to understand about searching algorithm. Broad Objectives of

the chapter/topic are:

1. Explain selection and merge sort algorithm. (Level 4)

2. Explain the time complexity analysis. (Level 4)

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1.Classify the best, worst and average case time complexity of selection sort ?(Level 2) 2.Classify the best

,worstandaveragecasetimecomplexityofselectionsort?(Level2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1.Draw the step of

Selection sort for the following data element: 15, 1, 70, 2, 41, 87

2.Draw the step of Insertion sort for the following data element : 5,11,7,12,47,8

QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The best case time

 $complexity of the \,merge\,sort\,technique\,is$ 

(a)O (n)

39

 $(b)O(n^2)$ 

(c)O(nlogn) (d)O(logn)

LABORATORY EXPERIMENT: related to the Topic objective and outcome

2. Implementprogramforfollowingsortingalgorithm a)Selection sort a )Merge sort

| UNIT: 8                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------|
| Title :Sorting                                                                                                              |
| Date: 15/10/15 Day: Wednesday                                                                                               |
| Date. 15/10/15 Day. Weatesday                                                                                               |
| CONTENTS                                                                                                                    |
| 1.Quick sort algorithm and time complexity analysis                                                                         |
| Topic/Unit/Chapter Objectives: student can able to understand about sorting and its time complexity Broad Objectives of the |
| chapter/topic are:                                                                                                          |
| l. Student can able to <b>understand</b> the algorithm of Quick sort                                                        |
| 2. student can able to <b>understand</b> Time complexity of Quick sort                                                      |
| Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the            |
| following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):                                     |
| Compare the best, worst and average case time complexity of Quick Sort? (Level 4)                                           |
| 2. Find the strategy which is used to implement Quick sort?(Level 4)                                                        |
|                                                                                                                             |
| HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria                              |
| 1. Draw the step of Quick sort for the following data element : 5,1,7,2,4,8,9,11,6                                          |
|                                                                                                                             |
| QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The best case time                      |
| complexity of the quick sort technique is                                                                                   |
| (a) $O(n)$ (b) $O(n^2)$ (c) $O(n \log n)$ (d) $O(\log n)$                                                                   |
| LABORATORY EXPERIMENT: related to the Topic objective and outcome 1. Implement program for                                  |
| following sorting algorithm                                                                                                 |
| a)Quick sort                                                                                                                |
|                                                                                                                             |

40

UNIT: 8& 9

Title :Tutorial-XI

#### Date: 16/10/15 Day: Friday

 $1. \ Give a comparative study among bubble, insertion and selection sort with examples.$ 

2. Write the linear search algorithm. What is the best time and worst time complexity of this algorithm.

3. Write the binary search algorithm. What is the best time and worst time complexity of this algorithm.

#### UNIT:8

#### Title: Sorting

#### Date: 28/10/15 Day: Wednesday

#### CONTENTS

- 1. Shell sort and Radix sort
- **2.** Time complexity analysis

Topic/Unit/ChapterObjectives: student can able to understand about more efficient sorting Algorithm and its time complexity.

Broad Objectives of the chapter/topic are:

- 1. Student can able to **understand**Shellsort.
- 2. Student can able to **understand**Radix sort.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. Implement the algorithm of Shell Sort.
- 2. Implement the algorithm of Radix Sort?

HOMEWORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1.Draw the step of Shell sort for the following data element 511,100,79,24,402,801,319,101,604.666,222,873,471,902,184

2.Draw the step of Radix sort for the following data element : 511,100,79,24,402,801,319,101,604.666,222,873,471,902,184

LABORATORY EXPERIMENT: related to the Topic objective and outcome 1. Implement program for

following sorting algorithm

a)Shellsort b)Radix sort

|                                                          |             |       |         |          | UNIT     | :8     |         |          |                                               |
|----------------------------------------------------------|-------------|-------|---------|----------|----------|--------|---------|----------|-----------------------------------------------|
|                                                          |             |       | r       | Fitle: 7 | Tutori   | al -XI | I Date  | :        |                                               |
|                                                          |             | 3     | 80/10/1 | 15 Day   | : Frid   | ay     |         |          |                                               |
| .Sort the given values using Qu                          | ick Sort.   |       |         |          |          |        |         |          |                                               |
|                                                          | 65          | 70    | 75      | 80       | 85       | 60     | 55      | 50       | 45                                            |
|                                                          | 05          | 70    | 75      | 80       | 85       | 00     | 55      | 50       | 45                                            |
|                                                          |             |       |         |          |          |        |         |          |                                               |
| .Sort the given values using Me                          | ergeSort.   |       |         |          |          |        |         |          |                                               |
|                                                          | 65          | 70    | 75      | 80       | 85       | 60     | 55      | 50       | 45                                            |
|                                                          |             |       |         |          |          |        |         |          |                                               |
|                                                          |             |       |         |          |          |        |         |          |                                               |
|                                                          |             |       |         |          |          |        |         |          |                                               |
|                                                          |             |       |         |          | UNIT     |        |         |          |                                               |
|                                                          |             |       |         | Ti       | tle So   | rting  |         |          |                                               |
|                                                          |             |       | Date:   | 03/11    | l/15 E   | Day: T | 'uesda  | ıy       |                                               |
|                                                          |             |       |         | CO       | ONTE     | NTS    |         |          |                                               |
| ) Algorithm for Heap sort                                |             |       |         |          |          |        |         |          |                                               |
| ) Construction of Heap tree                              |             |       |         |          |          |        |         |          |                                               |
| )Time complexity analysis                                |             |       |         |          |          |        |         |          |                                               |
| opic/Unit/Chapter Objectives                             | student can | know  | the alg | gorithm  | n and co | omplex | ity ana | alysis o | of merge sort. Broad Objectives of the        |
| hapter/topic are:                                        |             |       |         |          |          |        |         |          |                                               |
| . Student can able to <b>unde</b>                        | rstand the  | algor | ithm o  | of hea   | p sort   |        |         |          |                                               |
| Once the student has com<br>ollowing activities (Perform |             | _     |         | -        |          |        |         |          | answer following questions/perform the nomy): |
| .Comparethe best ,worst a                                |             |       |         |          |          |        |         |          |                                               |

2. **Explain** the Heap sort algorithm? (Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria 1.Draw the step of Heap

sortforthefollowingdataelement:5,1,7,2,4,8,9,11,6

LABORATORY EXPERIMENT: related to the Topic objective and outcome 1. Implement program for

 $following \, sorting \, algorithm$ 

a)Heap sort

UNIT: 5

Title: NON-Linear Data Structure(Graph) Date:

04/11/15 Day: Wednesday

#### CONTENTS

1) Graph definition

2) Types of Graph: Directed, undirected, complete graph

3) Definitions- weighted/un-weighted edges, sub-graph, degree, cut-vertex/articulation point, pendant node, clique, complete graph, connected components – strongly connected component, weakly connected component, path, shortest path, isomorphism

Topic/Unit/Chapter Objectives: student can know the algorithm and complexity analysis of Heap sort. Broad Objectives of the

chapter/topic are:

43

1. Abletounderstanddefinition of graph. 2. Able to

learn deferent terminology of graph

3. Able to understand different types of graph?

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

1. **Describe** the definition of graph? (Level 2)

2. **Identify** directed or undirected graph?(Level 4)

3. Describe the definition of different types of graphs? (Level 2)
4. Identify isomorphism of graph? (Level 4)
HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

Drawan un directed graph which have 8 vertex and represent it using array.

QUIZ: related to Topic objective and outcome (new quiz with real world examples) 1. The vertex, removal

of which makes a graph disconnected, is called
(a) pendant vertex
(b) bridge
(c) articulation point
(d) none of these

#### UNIT: 8 & 5

#### Title : Tutorial XII Date:

#### 06/11/15 Day: Friday

- 1. Createaheap(max/min)withthefollowingdata33,25,67,89,12,55,3,67.Andsortthedata in ascending and descending order.
- 2. Short notes on heap sort.
- 3. Draw a directed graph which have 8 vertex and represent it using array.

#### UNIT: 4

Title:NON-LinearDataStructure(Graph) Date:

17/11/15 Day: Tuesday

#### CONTENTS

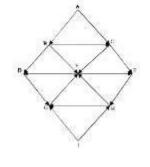
1) Graph representations/storage implementations – adjacency matrix, adjacency list, adjacency multi- list.

2) Graph Traversal-BFS and DFS (algorithms with examples)

Topic/Unit/Chapter Objectives: student can know the algorithm and complexity analysis of Radix sort. Broad Objectives of the

chapter/topic are:

- 1. Able to understand adjacency matrix and list.
- 2. Able to understand BFS and DFS traversal of graphs
- 3. Comparison study about BFS and DFS


Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

- 1. How to **construct** adjacency matrix of a graph? (Level 6)
- 2. How to **construct** a graph using linked list? (Level 6)
- 3. **Explain**DFSwith example. (Level 4)
- 4. **Describe** the data structure need to develop DFS? (Level 2)
- 5. **Explain**BFSwith example. (Level 4)
- 6. **Describe** the data structure need to develop BFS? (Level 2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Traverse the following Graph using DFS and BFS



#### TOPIC/UNIT/CHAPTER: 5

Title:NON-LinearDataStructure(Graph) Date:

18/11/15 Day: Wednesday

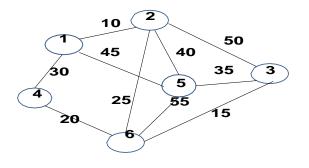
#### CONTENTS

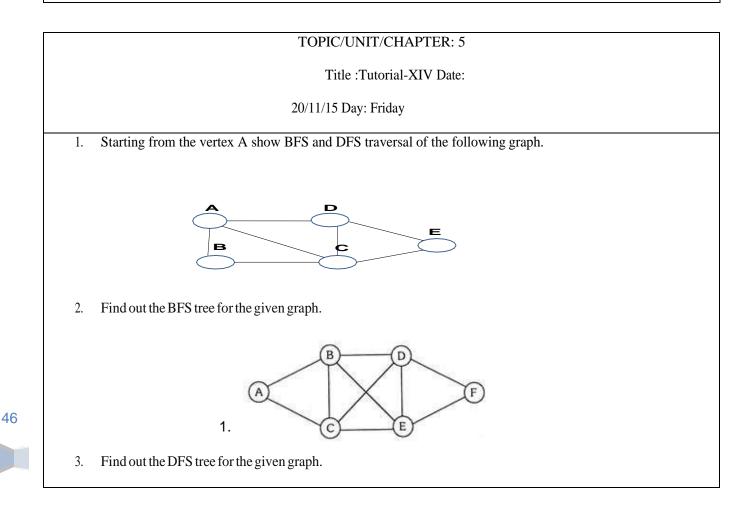
- 1) SpanningTree
- 2) Minimum SpanningTree

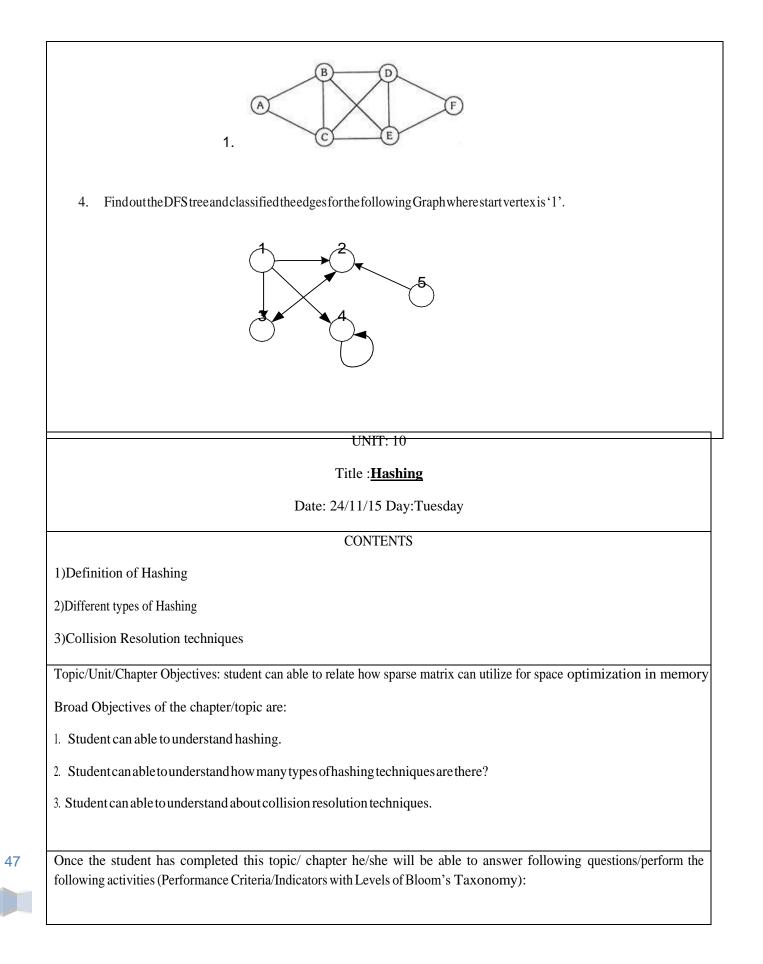
3)Prim's algorithm.

Topic/Unit/Chapter Objectives: how to define graph and how to represent graph Broad Objectives

of the chapter/topic are:


- 1. Able to know about spanning tree.
- 2. Able to understand minimum spanning tree.
- 3. Able to know about Prim's algorithm with example.


Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):


- 1. **Describe**minimum spanning tree? (Level 2)
- 2. **Explain** prim's algorithm with example. (Level 4)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. UsingPrim'sAlgorithmtofindtheminimumspanningtree(MST)ofthegivengraph.







1. DescribeHashing .(Level2)

2. **Describe** the utilization of different types of hashing? (Level 2)

3. Describedifferent types of collision resolution techniques. (Level 2)

HOME WORK: related to Topic objective and outcome as expressed in terms of indicators/criteria

1. Calculate load factor.

#### TOPIC/UNIT/ CHAPTER:

#### Title :WBUT QUESTION ANSWER SESSION

Date: 25/11/15 Day:33

#### CONTENTS

Last 5 years university question paper.

Topic/Unit/Chapter Objectives: student can able to relate how sparse matrix can utilize for space optimization in memory

Broad Objectives of the chapter/topic are:

- 1. They are able to explain to analyze, investigate and evaluate.
- 2. They are able to judge how to apply theory.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities (Performance Criteria/Indicators with Levels of Bloom's Taxonomy):

Discussion most of the university questions in last 5 years.

a) Teaching Strategy/Method (describe instructional methods, usage of ICT, efficient and engaging instructions and display the best practices on institutional website)

- 1) To giveAssignments
- 2) By giving more interesting examples
- 3) Giving lectures in power point presentation

#### b) Strategy to support weak students

- 1) Toengagetheweakstudentsinhabitofstudying, Igivehimsomeeasyquestionsinregularbasis.
- 2) Someweakstudents also have a problem that they forget what they learn. In myclass I always give some tips on how to recall and how to write systematically.
- 3) Weakstudentsneedspecialattentionevenaftercollegehours. Ialways givesomeextrahourstoa weak student.

#### c) Strategy to encourage bright students

- 1) Have an extra challenge ready that allows the student to go deeper into the subject, learn a little more, or apply a skill he has just learned in a new way.
- 2) Some students are engaged with the final year students for their final project.

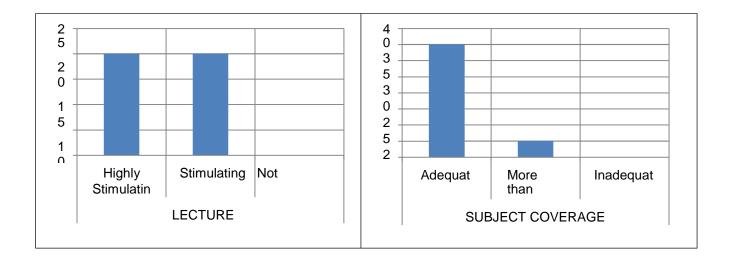
#### d) Efforts to keep students engaged

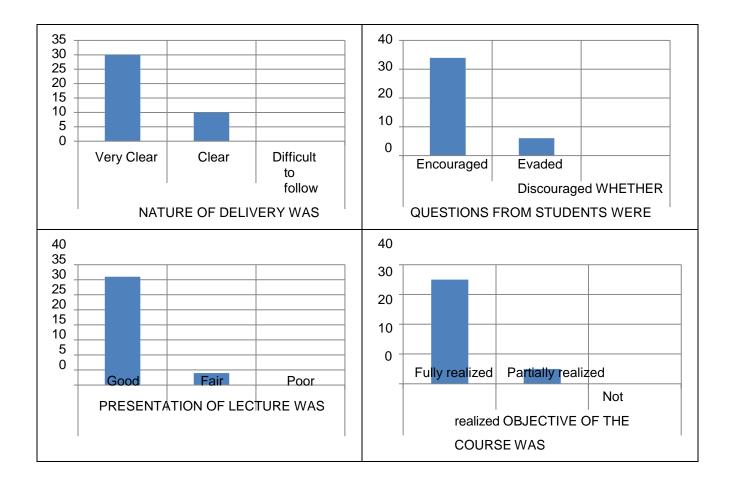
- 1) Regular basis Home Work.
- 2) 5-10 minutes spend in an every class for question answer session.
- 3) Quiz in regular basis.

49

4) Some technical assignments in group wise.




# e) Analysis of Students performance in the course (internal) (labs, seminars, tests, assignments, quiz, exam etc)


- 73% studentshave attained these ttarget of 60% marks for CO1
- 83% students have attained these ttarget of 60% marks for CO2
- $\bullet \qquad 89\% \, students have attained the sett arget of 60\% \, marks for CO3$
- $\bullet \qquad 86\% students have attained the settarget of 60\% marks for CO4$
- 79% students have attained these ttarget of 60% marks for CO5

#### f) Analysis of Students performance in the course (university results)

|                      | Target Course<br>Outcome% | TOTAL<br>STUDENTS | TOTAL<br>STUDENT WHO<br>ATTAINED<br>OUTCOME | % STUDENTS<br>WHO ATTAINED<br>THE<br>OUTCOME |
|----------------------|---------------------------|-------------------|---------------------------------------------|----------------------------------------------|
| University<br>Result | 60%                       | 40                | 36                                          | 90%                                          |

#### g) Student Feedback





#### h) Teacher Self-Assessment (at the completion of course)

At the completion of course I have understood that CO1 and CO5 has reached the attainment levels bot not satisfactorily... That's why more assignments and quiz questions should be provided.

#### i) Recommendations/Suggestions for improvement by faculty

Text books are available in the library but in previous edition. That's why books should be updated.

Siliguri Institute of Technology INTERNAL ASSESSMENT REPORT Paper Name: Data Structure & Algorithm Paper Code: CS 302

#### FACULTYNAME: Ms.SUTAPA BHATTACHARYA

51

**YEAR: 2015** 

\_STREAM:<u>B.TECH[CSE]</u> YEAR:<u>2ND</u> SEMESTER:<u>IST</u> SECTION:<u>B</u> Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND NO. OF CLASS HELD: <u>52& 29(For</u> Lateral)

| S<br>N | NAME                     | ROLL NO.    | ATTEND<br>[5 MA |       | IN<br>EX | ARKS<br>TERNA<br>(AM[1:<br>ARKS] | L<br>5 | -           | UIZ [10 MA<br>KS=[((I+II)/30 | -     | TOTAL<br>[30<br>MARKS] |
|--------|--------------------------|-------------|-----------------|-------|----------|----------------------------------|--------|-------------|------------------------------|-------|------------------------|
|        |                          |             | TOTAL<br>%      | MARKS | Ι        | II                               | AVG    | Q-I<br>[15] | Q-II [15]                    | MARKS |                        |
| 1      | RAKESH KUMAR             | 11900114049 | 80.77           | 5     | 25       | 28                               | 14     | 8           | 11                           | 7     | 26                     |
| 2      | RISAB BISWAS             | 11900114050 | 75              | 4     | 25       | 28                               | 14     | 12          | 15                           | 9     | 27                     |
| 3      | RISHITA<br>CHOWDHURY     | 11900114051 | 88.46           | 5     | 25       | 27                               | 14     | 9           | 10                           | 7     | 26                     |
| 4      | RIYA MITRA               | 11900114052 | 80.77           | 5     | 29       | 27                               | 15     | 9           | 12                           | 7     | 27                     |
| 5      | RUPAM MITRA              | 11900114053 | 46.15           | 3     | 16       | AB                               | 8      | 13          | 9                            | 8     | 19                     |
| 6      | SACHIN KUMAR<br>SAHA     | 11900114054 | 61.54           | 4     | 23       | 22                               | 12     | 11          | 13                           | 8     | 24                     |
| 7      | SAGAR BHATTARAI          | 11900114055 | 92.31           | 5     | 23       | 18                               | 11     | 9           | 9                            | 6     | 22                     |
| 8      | SAGARIKA MITRA           | 11900114056 | 92.31           | 5     | 22       | 29                               | 14     | 10          | 11                           | 7     | 26                     |
| 9      | SAHITYA KAUSHIK          | 11900114057 | 92.31           | 5     | 24       | 29                               | 14     | 9           | 11                           | 7     | 26                     |
| 10     | SAMIK ANWAR              | 11900114058 | 88.46           | 5     | 29       | 28                               | 15     | 13          | 13                           | 9     | 29                     |
| 11     | SAMRAT<br>BHATTACHARJEE  | 11900114059 | 38.46           | 3     | A<br>B   | 03                               | 2      | 8           | 9                            | 6     | 11                     |
| 12     | SANDIPAN<br>CHAKRABORTY  | 11900114060 | 67.31           | 4     | A<br>B   | 22                               | 6      | 13          | 13                           | 9     | 19                     |
| 13     | SANGAM GURUNG            | 11900114061 | 86.54           | 5     | 27       | 26                               | 14     | 12          | 12                           | 8     | 27                     |
| 14     | SANTANU RAKSHIT          | 11900114062 | 67.31           | 4     | 23       | 24                               | 12     | 8           | 9                            | 6     | 22                     |
| 15     | SAPTARSHI GHOSH          | 11900114063 | 100             | 5     | 10       | 03                               | 4      | 10          | 11                           | 8     | 17                     |
| 16     | SAYAN<br>CHAKRABORTY     | 11900114064 | 48.08           | 3     | 08       | 04                               | 4      | 7           | 7                            | 5     | 12                     |
| 17     | SHALINI PRADHAN          | 11900114065 | 94.23           | 5     | 24       | 27                               | 13     | 15          | 15                           | 10    | 28                     |
| 18     | SHALINI ROY<br>CHOWDHURY | 11900114066 | 57.69           | 3     | 25       | 26                               | 14     | 12          | 12                           | 8     | 25                     |
| 19     | SHASHI KANT<br>PATEL     | 11900114067 | 90.38           | 5     | 24       | 24                               | 12     | 12          | 12                           | 8     | 25                     |
| 20     | SHIRSANA GHATAK          | 11900114068 | 48.08           | 3     | 15       | 14                               | 8      | 11          | 11                           | 8     | 22                     |
| 21     | SNEHA PARIJAAT           | 11900114069 | 76.92           | 4     | 22       | 15                               | 10     | 12          | 13                           | 9     | 23                     |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

| 22 | SOHAM SARKAR               | 11900114070 | 86.54 | 5 | 29 | 18 | 13 | 10 | 11 | 7  | 25 |
|----|----------------------------|-------------|-------|---|----|----|----|----|----|----|----|
| 23 | SOURAVENDU<br>NANDY        | 11900114071 | 71.15 | 4 | 27 | 23 | 13 | 12 | 12 | 8  | 25 |
| 24 | SOUVIK BISWAS              | 11900114072 | 80.77 | 5 | 29 | 28 | 15 | 10 | 10 | 7  | 27 |
| 25 | SRIJA GHOSH                | 11900114073 | 76.92 | 4 | 20 | 22 | 11 | 12 | 12 | 8  | 23 |
| 26 | SUBHAM GUHA                | 11900114074 | 36.54 | 3 | AB | 09 | 3  | 10 | 10 | 7  | 13 |
| 27 | SUBHOJIT KUNDU             | 11900114075 | 71.15 | 4 | AB | 25 | 7  | 12 | 12 | 8  | 19 |
| 28 | SUDIPTA SAHA               | 11900114076 | 67.31 | 3 | 29 | 17 | 13 | 7  | 10 | 6  | 22 |
| 29 | SURAJ SHARMA               | 11900114077 | 73.08 | 4 | 20 | 17 | 10 | 12 | 14 | 9  | 23 |
| 30 | SURAJIT KUMAR<br>DAS       | 11900114078 | 76.92 | 4 | 28 | 24 | 13 | 12 | 14 | 9  | 26 |
| 31 | SWARNAVA<br>MUKHERJEE      | 11900114079 | 92.31 | 5 | 28 | 29 | 15 | 12 | 12 | 8  | 28 |
| 32 | SWEETY                     | 11900114080 | 71.15 | 4 | 19 | 24 | 11 | 9  | 11 | 7  | 22 |
| 33 | UJJAL DAS                  | 11900114081 | 76.92 | 4 | 23 | 18 | 11 | 8  | 8  | 6  | 21 |
| 34 | VINITA KUMARI              | 11900114082 | 86.54 | 5 | 14 | 10 | 7  | 12 | 12 | 8  | 20 |
| 35 | ANIRBAN HALDAR             | 11900114086 | 57.69 | 3 | 17 | 20 | 10 | 10 | 8  | 6  | 19 |
| 36 | ADRIJA PAUL(L)             | 11900115095 | 62.06 | 4 | 13 | 13 | 8  | 9  | 12 | 7  | 20 |
| 37 | BINDHYA MANGAN(L)          | 11900115096 | 62.06 | 4 | 18 | 17 | 10 | 10 | 10 | 7  | 21 |
| 38 | POOJA UPADHYAY(L)          | 11900115097 | 65.50 | 4 | 20 | 17 | 10 | 13 | 12 | 9  | 23 |
| 39 | RAJAT MUKHIA(L)            | 11900115098 | 82.75 | 5 | 22 | 24 | 12 | 14 | 14 | 10 | 27 |
| 40 | SHRADHANJALI<br>PRADHAN(L) | 11900115099 | 86.20 | 5 | 22 | 11 | 14 | 11 | 8  | 7  | 26 |

53

#### Siliguri Institute of Technology ATTENDANCE SHEET (LECTURE) Paper Name: Data Structure and Algorithm Paper Code: CS302

| ROLL<br>NO. | 21/7(2) | 22/7 | 23/7 | 28/7(2) | 30/7 | 4/8(2) | 5/8 | 6/8 | 11/8(2) | 12/8 | 19/8(2) | 25/8(2) | 26/8 | 1/9(2) | 8/9(2) | 6/6 | 12/9(2) | 15/9(2) | 16/9 | 30/9 | 1/10(2) | 5/10 | 6/10(2) | 2/11(2) | 3/11(2) | 4/11(3) | 6/11(2) |  |  |  |
|-------------|---------|------|------|---------|------|--------|-----|-----|---------|------|---------|---------|------|--------|--------|-----|---------|---------|------|------|---------|------|---------|---------|---------|---------|---------|--|--|--|
| 11900114049 | 0       | 0    | 0    | 2       | 1    | 2      | 1   | 0   | 2       | 1    | 2       | 0       | 0    | 2      | 2      | 1   | 2       | 2       | 1    | 1    | 2       | 1    | 2       | 2       | 2       | 3       | 0       |  |  |  |
| 11900114050 | 2       | 0    | 1    | 2       | 1    | 2      | 1   | 1   | 2       | 1    | 0       | 2       | 1    | 0      | 2      | 0   | 0       | 2       | 1    | 0    | 2       | 1    | 2       | 2       | 2       | 3       | 0       |  |  |  |
| 11900114051 | 2       | 1    | 1    | 2       | 1    | 2      | 1   | 0   | 2       | 1    | 2       | 2       | 1    | 2      | 2      | 0   | 2       | 2       | 1    | 0    | 2       | 1    | 2       | 2       | 2       | 3       | 0       |  |  |  |





| 11900115098 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |  |  |  |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|--|
| 11900115099 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |  |  |  |

#### Siliguri Institute of Technology ATTENDANCE SHEET (TUTORIAL CLASS) Paper Name: Data Structure& Algorithm Paper Code: CS 302

#### FACULTYNAME: Ms. SUTAPA BHATTACHARYA

#### **YEAR: 2015**

| STR | EAM: <u><b>B.TECH[ CSE ]</b></u> | YEAR: <u>3rd</u> | SEM  | ESTER | R:I <u>st</u> |      | SECTI | ON: <u>B</u> |     | NO.  | OFCL | ASSE | IELD: | 12    |
|-----|----------------------------------|------------------|------|-------|---------------|------|-------|--------------|-----|------|------|------|-------|-------|
| SN  | NAME                             | ROLL NO.         | 24/7 | 31/7  | 7/8           | 14/8 | 21/8  | 28/8         | 4/9 | 11/9 | 21/9 | 9/10 | 2/11  | Total |
| 1   | RAKESH KUMAR                     | 11900114049      | 1    | 1     | 1             | 0    | 1     | 0            | 1   | 1    | 1    | 0    | 0     | 7     |
| 2   | RISAB BISWAS                     | 11900114050      | 1    | 1     | 0             | 1    | 1     | 0            | 0   | 1    | 1    | 0    | 0     | 6     |
| 3   | RISHITA CHOWDHURY                | 11900114051      | 1    | 0     | 0             | 1    | 0     | 0            | 0   | 1    | 1    | 0    | 0     | 4     |
| 4   | RIYA MITRA                       | 11900114052      | 1    | 1     | 0             | 1    | 0     | 0            | 1   | 1    | 0    | 0    | 1     | 6     |
| 5   | RUPAM MITRA                      | 11900114053      | 1    | 0     | 1             | 0    | 1     | 0            | 1   | 0    | 1    | 1    | 1     | 7     |
| 6   | SACHIN KUMAR SAHA                | 11900114054      | 0    | 0     | 0             | 0    | 0     | 1            | 0   | 0    | 0    | 0    | 0     | 1     |
| 7   | SAGAR BHATTARAI                  | 11900114055      | 1    | 1     | 1             | 0    | 1     | 0            | 1   | 0    | 1    | 0    | 0     | 6     |
| 8   | SAGARIKA MITRA                   | 11900114056      | 0    | 0     | 1             | 0    | 0     | 0            | 0   | 0    | 1    | 0    | 1     | 3     |
| 9   | SAHITYA KAUSHIK                  | 11900114057      | 0    | 0     | 0             | 0    | 0     | 1            | 1   | 1    | 1    | 1    | 1     | 6     |
| 10  | SAMIK ANWAR                      | 11900114058      | 1    | 0     | 1             | 0    | 0     | 1            | 0   | 1    | 1    | 0    | 1     | 6     |
| 11  | SAMRAT<br>BHATTACHARJEE          | 11900114059      | 0    | 1     | 1             | 0    | 1     | 0            | 1   | 1    | 1    | 1    | 1     | 8     |
| 12  | SANDIPAN<br>CHAKRABORTY          | 11900114060      | 0    | 1     | 1             | 1    | 0     | 1            | 0   | 0    | 1    | 1    | 0     | 6     |
| 13  | SANGAM GURUNG                    | 11900114061      | 0    | 1     | 0             | 0    | 1     | 0            | 1   | 1    | 0    | 0    | 1     | 5     |
| 14  | SANTANU RAKSHIT                  | 11900114062      | 0    | 1     | 1             | 0    | 1     | 1            | 0   | 0    | 0    | 1    | 1     | 6     |
| 15  | SAPTARSHI GHOSH                  | 11900114063      | 0    | 1     | 0             | 0    | 1     | 0            | 1   | 1    | 0    | 0    | 0     | 4     |
| 16  | SAYAN CHAKRABORTY                | 11900114064      | 1    | 0     | 0             | 1    | 1     | 0            | 0   | 0    | 0    | 0    | 1     | 4     |
| 17  | SHALINI PRADHAN                  | 11900114065      | 1    | 1     | 0             | 1    | 1     | 0            | 0   | 1    | 0    | 1    | 0     | 6     |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

| 18 | SHALINI ROY<br>CHOWDHURY   | 11900114066 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 4 |
|----|----------------------------|-------------|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | SHASHI KANT PATEL          | 11900114067 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 5 |
| 20 | SHIRSANA GHATAK            | 11900114068 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 5 |
| 21 | SNEHA PARIJAAT             | 11900114069 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 22 | SOHAM SARKAR               | 11900114070 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 7 |
| 23 | SOURAVENDU NANDY           | 11900114071 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 6 |
| 24 | SOUVIK BISWAS              | 11900114072 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 4 |
| 25 | SRIJA GHOSH                | 11900114073 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 8 |
| 26 | SUBHAM GUHA                | 11900114074 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 7 |
| 27 | SUBHOJIT KUNDU             | 11900114075 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 5 |
| 28 | SUDIPTA SAHA               | 11900114076 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 5 |
| 29 | SURAJ SHARMA               | 11900114077 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 3 |
| 30 | SURAJIT KUMAR DAS          | 11900114078 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 5 |
| 31 | SWARNAVA<br>MUKHERJEE      | 11900114079 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 6 |
| 32 | SWEETY                     | 11900114080 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 6 |
| 33 | UJJAL DAS                  | 11900114081 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 6 |
| 34 | VINITA KUMARI              | 11900114082 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 8 |
| 35 | ANIRBAN HALDAR             | 11900114086 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 3 |
| 36 | ADRIJA PAUL(L)             | 11900115095 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 6 |
| 37 | BINDHYA MANGAN(L)          | 11900115096 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 5 |
| 38 | POOJA UPADHYAY(L)          | 11900115097 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 3 |
| 39 | RAJAT MUKHIA(L)            | 11900115098 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 5 |
| 40 | SHRADHANJALI<br>PRADHAN(L) | 11900115099 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 3 |

#### Siliguri Institute of Technology LABORATORY ATTENDANCE SHEET Paper Name: Paper Code: CS 392

#### FACULTY NAME: Ms. SUTAPA BHATTACHARYA

#### YEAR:2015

| STR | EAM: <u>b.tech[ cse ]</u> | YEAR: <u><b>3</b></u> <sup>RD</sup> | SEM  | ESTER | : <u>I<sup>ST</sup></u> | GR   | OUP: <u>I</u> | <u>81</u> | Р   | No.<br>ractic |      | 2      |        |        |                |
|-----|---------------------------|-------------------------------------|------|-------|-------------------------|------|---------------|-----------|-----|---------------|------|--------|--------|--------|----------------|
| SN  | NAME                      | DAY                                 | 1    | 2     | 3                       | 4    | 5             | 6         | 7   | 8             | 9    | 1<br>0 | 1<br>1 | 1<br>2 | TOTAL<br>MARKS |
| SIN | NAME                      | DATE                                | 23/7 | 30/7  | 6/8                     | 13/8 | 20/8          | 27/8      | 3/9 | 10/9          | 17/9 | 1/10   | 8/10   | 5/11   |                |
|     |                           | ROLL NO                             |      |       |                         |      |               |           |     |               |      |        |        |        |                |
| 1   | RAKESH KUMAR              | 11900114049                         | 0    | 1     | 1                       | 1    | 1             | 1         | 1   | 1             | 1    | 1      | 1      | 1      | 11             |
| 2   | RISAB BISWAS              | 11900114050                         | 1    | 1     | 1                       | 1    | 1             | 1         | 0   | 1             | 1    | 1      | 1      | 1      | 11             |
| 3   | RISHITA<br>CHOWDHURY      | 11900114051                         | 1    | 1     | 0                       | 1    | 1             | 1         | 1   | 1             | 1    | 1      | 1      | 1      | 11             |
| 4   | RIYA MITRA                | 11900114052                         | 1    | 1     | 0                       | 1    | 0             | 0         | 1   | 1             | 0    | 0      | 1      | 1      | 7              |
| 5   | RUPAM MITRA               | 11900114053                         | 0    | 1     | 1                       | 1    | 0             | 1         | 0   | 0             | 1    | 1      | 1      | 0      | 7              |
| 6   | SACHIN KUMAR<br>SAHA      | 11900114054                         | 0    | 1     | 1                       | 1    | 1             | 1         | 1   | 0             | 0    | 0      | 1      | 0      | 7              |
| 7   | SAGAR<br>BHATTARAI        | 11900114055                         | 0    | 1     | 1                       | 0    | 1             | 1         | 1   | 1             | 0    | 1      | 1      | 1      | 9              |
| 8   | SAGARIKA<br>MITRA         | 11900114056                         | 1    | 1     | 0                       | 1    | 1             | 1         | 1   | 1             | 1    | 0      | 1      | 1      | 10             |
| 9   | SAHITYA<br>KAUSHIK        | 11900114057                         | 1    | 1     | 0                       | 1    | 1             | 1         | 1   | 1             | 1    | 0      | 1      | 1      | 10             |
| 10  | SAMIK ANWAR               | 11900114058                         | 0    | 1     | 1                       | 1    | 0             | 1         | 0   | 1             | 1    | 0      | 1      | 1      | 9              |
| 11  | SAMRAT<br>BHATTACHARJEE   | 11900114059                         | 0    | 0     | 0                       | 1    | 1             | 0         | 0   | 0             | 0    | 0      | 0      | 0      | 2              |
| 12  | SANDIPAN<br>CHAKRABORTY   | 11900114060                         | 1    | 1     | 0                       | 1    | 1             | 1         | 0   | 1             | 1    | 0      | 0      | 1      | 8              |
| 13  | SANGAM                    | 11900114061                         | 1    | 1     | 1                       | 1    | 1             | 1         | 1   | 1             | 0    | 1      | 1      | 1      | 11             |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

|    | GURUNG                   |             |   |   |   |   |   |   |   |   |   |   |   |   |    |
|----|--------------------------|-------------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 14 | SANTANU<br>RAKSHIT       | 11900114062 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 8  |
| 15 | SAPTARSHI GHOSH          | 11900114063 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
| 16 | SAYAN<br>CHAKRABORTY     | 11900114064 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 6  |
| 17 | SHALINI<br>PRADHAN       | 11900114065 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
| 18 | SHALINI ROY<br>CHOWDHURY | 11900114066 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 9  |
| 19 | SHASHI KANT<br>PATEL     | 11900114067 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 10 |
| 20 | SHIRSANA<br>GHATAK       | 11900114068 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 8  |

#### Siliguri Institute of Technology LABORATORY ATTENDANCE SHEET Paper Name: Paper Code: CS 392

#### FACULTYNAME:<u>Ms.SUTAPA</u> BHATTACHARYA

YEA R:

2015

| STRI<br>CSE | EAM: <u><b>B.TECH[</b></u><br>2 ] | YEAR:3RD                      | SEM  | ESTEI | R: <u>Ist</u> | GR   | OUP: | <u>B2</u> |      |      |      | RACT<br>27(Lat | ICAL<br>eral) |                |
|-------------|-----------------------------------|-------------------------------|------|-------|---------------|------|------|-----------|------|------|------|----------------|---------------|----------------|
| SN          | NAME                              | DAY                           | 1    | 2     | 3             | 4    | 5    | 6         | 7    | 8    | 9    | 10             | 11            | TOTAL<br>MARKS |
| SN NAME     | DATE                              | 21/7                          | 28/7 | 04/8  | 11/8          | 25/8 | 1/9  | 8/9       | 15/9 | 29/9 | 6/10 | 3/11           |               |                |
|             |                                   | ROLL NO.                      |      |       |               |      |      |           |      |      |      |                |               |                |
| 1           | SNEHA PARIJAAT                    | 11900114069                   | 0    | 1     | 1             | 1    | 0    | 1         | 0    | 1    | 1    | 1              | 0             | 7              |
| 2           | SOHAM SARKAR                      | 11900114070                   | 1    | 1     | 1             | 1    | 1    | 1         | 1    | 1    | 1    | 1              | 0             | 10             |
| 3           | SOURAVENDU<br>NANDY               | 11900114071                   | 1    | 0     | 1             | 1    | 1    | 1         | 1    | 1    | 1    | 1              | 0             | 9              |
| 4           | SOUVIK BISWAS                     | 11900114072                   | 1    | 1     | 1             | 1    | 1    | 1         | 1    | 0    | 1    | 1              | 0             | 10             |
| 5           | SRIJA GHOSH                       | 11900114073                   | 1    | 1     | 1             | 1    | 1    | 1         | 1    | 1    | 1    | 1              | 1             | 11             |
| 6           | SUBHAM GUHA                       | 11900114074                   | 0    | 1     | 0             | 0    | 0    | 1         | 1    | 1    | 0    | 0              | 0             | 5              |
| Hew         | SUBHOJIT KUNDU<br>lett-PackardCOU | 11900114075<br>RSE FILE ON DA | TÅ S | STRU  | JCTU          | RE / | ND   | 1         | 1    | 1    | 0    | 0              | 1             | 9              |

| 8  | SUDIPTA SAHA               | 11900114076 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 10 |
|----|----------------------------|-------------|---|---|---|---|---|---|---|---|---|---|---|----|
| 9  | SURAJ SHARMA               | 11900114077 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 9  |
| 10 | SURAJIT KUMAR<br>DAS       | 11900114078 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
| 11 | SWARNAVA<br>MUKHERJEE      | 11900114079 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| 12 | SWEETY                     | 11900114080 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 8  |
| 13 | UJJAL DAS                  | 11900114081 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 8  |
| 14 | VINITA KUMARI              | 11900114082 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 8  |
| 15 | ANIRBAN HALDAR             | 11900114086 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 7  |
| 16 | ADRIJA PAUL(L)             | 11900115095 |   |   |   |   | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 4  |
| 17 | BINDHYA<br>MANGAN(L)       | 11900115096 |   |   |   |   | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 5  |
| 18 | POOJA<br>UPADHYAY(L)       | 11900115097 |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 6  |
| 19 | RAJAT MUKHIA(L)            | 11900115098 |   |   |   |   | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 6  |
| 20 | SHRADHANJALI<br>PRADHAN(L) | 11900115099 |   |   |   |   | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 5  |

#### Siliguri Institute of Technology

#### RECORDS OF ASSIGNMENTS/<del>QUIZ</del> Paper Name: Data Structure& Algorithm Paper Code: CS 302

|   | SN | NAME              | ROLL NO.    | Assign - I | Assign - II | SN | NAME                | ROLL NO.    | Assign - I | Assign - II |
|---|----|-------------------|-------------|------------|-------------|----|---------------------|-------------|------------|-------------|
|   | 1  | RAKESH KUMAR      | 11900114049 | 1          | 1           | 21 | SNEHA PARIJAAT      | 11900114069 | 1          | 1           |
| Ī | 2  | RISAB BISWAS      | 11900114050 | 1          | 1           | 22 | SOHAM SARKAR        | 11900114070 | 1          | 1           |
|   | 3  | RISHITA CHOWDHURY | 11900114051 | 1          | 1           | 23 | SOURAVENDU<br>NANDY | 11900114071 | 1          | 1           |
|   | 4  | RIYA MITRA        | 11900114052 | 1          | 1           | 24 | SOUVIK BISWAS       | 11900114072 | 1          | 1           |
|   | 5  | RUPAM MITRA       | 11900114053 | 1          | 1           | 25 | SRIJA GHOSH         | 11900114073 | 1          | 1           |
|   | 6  | SACHIN KUMAR SAHA | 11900114054 | 1          | 1           | 26 | SUBHAM GUHA         | 11900114074 | 1          | 1           |

| 7  | SAGAR BHATTARAI          | 11900114055 | 1 | 1 | 27 | SUBHOJIT KUNDU             | 11900114075 | 1 | 1 |
|----|--------------------------|-------------|---|---|----|----------------------------|-------------|---|---|
| 8  | SAGARIKA MITRA           | 11900114056 | 1 | 1 | 28 | SUDIPTA SAHA               | 11900114076 | 1 | 1 |
| 9  | SAHITYA KAUSHIK          | 11900114057 | 1 | 1 | 29 | SURAJ SHARMA               | 11900114077 | 1 | 1 |
| 10 | SAMIK ANWAR              | 11900114058 | 1 | 1 | 30 | SURAJIT KUMAR<br>DAS       | 11900114078 | 1 | 1 |
| 11 | SAMRAT<br>BHATTACHARJEE  | 11900114059 | 1 | 1 | 31 | SWARNAVA<br>MUKHERJEE      | 11900114079 | 1 | 1 |
| 12 | SANDIPAN<br>CHAKRABORTY  | 11900114060 | 1 | 1 | 32 | SWEETY                     | 11900114080 | 1 | 1 |
| 13 | SANGAM GURUNG            | 11900114061 | 1 | 1 | 33 | UJJAL DAS                  | 11900114081 | 1 | 1 |
| 14 | SANTANU RAKSHIT          | 11900114062 | 1 | 1 | 34 | VINITA KUMARI              | 11900114082 | 1 | 1 |
| 15 | SAPTARSHI GHOSH          | 11900114063 | 1 | 1 | 35 | ANIRBAN HALDAR             | 11900114086 | 1 | 1 |
| 16 | SAYAN CHAKRABORTY        | 11900114064 | 1 | 1 | 36 | ADRIJA PAUL(L)             | 11900115095 | 1 | 1 |
| 17 | SHALINI PRADHAN          | 11900114065 | 1 | 1 | 37 | BINDHYA<br>MANGAN(L)       | 11900115096 | 1 | 1 |
| 18 | SHALINI ROY<br>CHOWDHURY | 11900114066 | 1 | 1 | 38 | POOJA UPADHYAY(L)          | 11900115097 | 1 | 1 |
| 19 | SHASHI KANT PATEL        | 11900114067 | 1 | 1 | 39 | RAJAT MUKHIA(L)            | 11900115098 | 1 | 1 |
| 20 | SHIRSANA GHATAK          | 11900114068 | 1 | 1 | 40 | SHRADHANJALI<br>PRADHAN(L) | 11900115099 | 1 | 1 |

#### Siliguri Institute of Technology LIST OF PRACTICAL'S Paper Name: Data Structure& Algorithm Paper Code: CS 392

| SN | Details of Experiment(s)                                    | Hours<br>Allotted |
|----|-------------------------------------------------------------|-------------------|
|    | Implement the following Operation of Array data structure : |                   |
| 1  | 1) Insert and delete an element in to an Array.             | 3 HRS             |
|    | 2) Traverse thearray.                                       |                   |
|    | Implement the following Operation of Single linked list :   |                   |
| 2  | 1) Create and Traverse a single linked list.                | 3 HRS             |
|    | 2) Insert and delete an element from a list                 |                   |

|    | 3) Reverse a single list.                                                                                                                                                                                                                                               |       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | <ul><li>4) Searching the element from the list</li><li>5) Sorting the node values in ascending order</li></ul>                                                                                                                                                          |       |
| 3  | <ol> <li>Implement The following Stack Operation using Array and Linked List : a)PUSH()</li> <li>b)POP() c) Traversal</li> <li>Write a program to implement Tower of Hanoi and 8 queen puzzle problem using recursion</li> </ol>                                        | 3 HRS |
| 4  | <ul> <li>1)Implement The following linear Queue Operation using Array and Linked list :</li> <li>a)Enqueue() b)Dequeue() c)Traversal</li> <li>2)Implement The following Circular Queue Operation using Array : a)Enqueue() b)Dequeue() c)</li> <li>Traversal</li> </ul> | 3 HRS |
| 5  | ImplementThefollowingDoubleendedQueueOperationusingArray:a)Insert left() b)Insert right() c)Delete left()d)Delete right()e)Traversal()                                                                                                                                  | 3 HRS |
| 6  | <ul> <li>Implement the following Operation of Double linked list :</li> <li>1) Create and Traverse a double linked list.</li> <li>2) Insert and delete an element from a list.</li> </ul>                                                                               | 3 HRS |
| 7  | Implement the following Operation of Circular linked list :         1) Create and Traverse a double linked list.         2) Insert and delete an element from a list.                                                                                                   | 3 HRS |
| 8  | Write a program to implement polynomial addition and multiplication using linked list.                                                                                                                                                                                  | 3 HRS |
| 9  | Implement The following Binary search Tree operation :a) Insert an element b) Delete an elementc) Search an element                                                                                                                                                     | 3 HRS |
| 10 | Develop the following sorting algorithm:<br>a)Bubble sort b)Selection sort c) Insertion Sort d)Merge sort                                                                                                                                                               | 3 HRS |

| 11 | Develop the following sorting algorithm:              | 3 HRS |
|----|-------------------------------------------------------|-------|
| 11 | a)Quick sort b)Heap sort c)Shell sort                 |       |
| 12 | Develop the following searching algorithm:            | 3 HRS |
| 12 | Linear Search, Binary Search and Interpolation search |       |

#### Siliguri Institute of Technology SESSIONAL/PRACTICAL PERFORMANCE RECORD Paper Name: Data Structure and Algorithm Lab Paper Code: CS 392

| FACULTYN      | AME: Ms SUTAPA BHATTA | <b>CHARYA</b> |
|---------------|-----------------------|---------------|
|               |                       | YEA           |
|               |                       | <b>R</b> :    |
|               |                       | 2015          |
| SEMESTER: IST | SECTION: <b>B</b>     |               |

STREAM: **<u>B.TECH[ CSE ]</u>** YEAR: <u>3RD</u>

62

SECTION: **B** 

| SN | NAME                    | ROLL NO     | Lab_A1(P1,P2,P6,<br>P7,P8)Marks:16 | Lab_A2(P3,P4<br>,P5)Marks:9 | Lab_A3(P<br>9)<br>Marks:4 | Lab_A4(P10,<br>P11,P12)<br>Marks:11 | TOTAL[40] |
|----|-------------------------|-------------|------------------------------------|-----------------------------|---------------------------|-------------------------------------|-----------|
| 1  | RAKESH KUMAR            | 11900114049 | 15                                 | 8                           | 4                         | 9                                   | 36        |
| 2  | RISAB BISWAS            | 11900114050 | 14                                 | 9                           | 4                         | 11                                  | 38        |
| 3  | RISHITA CHOWDHURY       | 11900114051 | 14                                 | 9                           | 4                         | 11                                  | 38        |
| 4  | RIYA MITRA              | 11900114052 | 13                                 | 9                           | 4                         | 11                                  | 37        |
| 5  | RUPAM MITRA             | 11900114053 | 7                                  | 5                           | 4                         | 8                                   | 24        |
| 6  | SACHINKUMARSAHA         | 11900114054 | 10                                 | 6                           | 4                         | 9                                   | 29        |
| 7  | SAGAR BHATTARAI         | 11900114055 | 9                                  | 6                           | 4                         | 9                                   | 28        |
| 8  | SAGARIKA MITRA          | 11900114056 | 14                                 | 9                           | 4                         | 11                                  | 38        |
| 9  | SAHITYA KAUSHIK         | 11900114057 | 12                                 | 9                           | 4                         | 11                                  | 36        |
| 10 | SAMIK ANWAR             | 11900114058 | 14                                 | 9                           | 4                         | 11                                  | 38        |
| 11 | SAMRAT<br>BHATTACHARJEE | 11900114059 | 7                                  | 7                           | 2                         | 4                                   | 21        |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

| 12 | SANDIPAN<br>CHAKRABORTY  | 11900114060 | 13 | 8 | 4 | 10 | 35 |
|----|--------------------------|-------------|----|---|---|----|----|
| 13 | SANGAM GURUNG            | 11900114061 | 14 | 9 | 4 | 11 | 38 |
| 14 | SANTANU RAKSHIT          | 11900114062 | 13 | 9 | 4 | 11 | 37 |
| 15 | SAPTARSHI GHOSH          | 11900114063 | 13 | 8 | 4 | 11 | 36 |
| 16 | SAYAN CHAKRABORTY        | 11900114064 | 11 | 8 | 4 | 9  | 32 |
| 17 | SHALINI PRADHAN          | 11900114065 | 14 | 9 | 4 | 11 | 38 |
| 18 | SHALINI ROY<br>CHOWDHURY | 11900114066 | 13 | 8 | 4 | 11 | 36 |
| 19 | SHASHI KANT PATEL        | 11900114067 | 13 | 9 | 4 | 9  | 35 |
| 20 | SHIRSANA GHATAK          | 11900114068 | 11 | 8 | 4 | 9  | 32 |
| 21 | SNEHA PARIJAAT           | 11900114069 | 11 | 9 | 4 | 11 | 35 |
| 22 | SOHAM SARKAR             | 11900114070 | 12 | 8 | 4 | 11 | 36 |
| 23 | SOURAVENDU NANDY         | 11900114071 | 11 | 8 | 3 | 8  | 30 |
| 24 | SOUVIK BISWAS            | 11900114072 | 14 | 9 | 4 | 11 | 38 |
| 25 | SRIJA GHOSH              | 11900114073 | 14 | 7 | 4 | 10 | 35 |
| 26 | SUBHAM GUHA              | 11900114074 | 8  | 6 | 3 | 7  | 24 |
| 27 | SUBHOJIT KUNDU           | 11900114075 | 14 | 8 | 4 | 10 | 36 |
| 28 | SUDIPTA SAHA             | 11900114076 | 11 | 7 | 4 | 10 | 32 |
| 29 | SURAJ SHARMA             | 11900114077 | 13 | 9 | 4 | 9  | 35 |
| 30 | SURAJIT KUMAR DAS        | 11900114078 | 13 | 9 | 4 | 11 | 37 |
| 31 | SWARNAVA<br>MUKHERJEE    | 11900114079 | 14 | 9 | 4 | 11 | 38 |
| 32 | SWEETY                   | 11900114080 | 13 | 8 | 4 | 10 | 35 |
| 33 | UJJAL DAS                | 11900114081 | 11 | 9 | 4 | 9  | 33 |
| 34 | VINITA KUMARI            | 11900114082 | 8  | 6 | 2 | 8  | 24 |
| 35 | ANIRBAN HALDAR           | 11900114086 | 8  | 6 | 2 | 6  | 22 |
| 36 | ADRIJA PAUL(L)           | 11900115095 | 11 | 6 | 3 | 9  | 29 |
| 37 | BINDHYA MANGAN(L)        | 11900115096 | 11 | 6 | 3 | 9  | 29 |
| 38 | POOJA UPADHYAY(L)        | 11900115097 | 13 | 9 | 4 | 11 | 37 |

Hewlett-PackardCOURSE FILE ON DATA STRUCTURE AND

| 39 | RAJAT MUKHIA(L)            | 11900115098 | 13 | 9 | 4 | 10 | 36 |
|----|----------------------------|-------------|----|---|---|----|----|
| 40 | SHRADHANJALI<br>PRADHAN(L) | 11900115099 | 12 | 9 | 4 | 11 | 35 |

|     | NAME WITH ROLL NUMBERS OF STUDENT WHOSE ACADEMIC PERFORMANCE IS NOT<br>SATISFACTORY |             |                                                                                                                        |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Sl. | Name of Student                                                                     | Roll No.    | Remedial measures taken by teacher                                                                                     |  |  |  |  |  |  |  |
| 1   | RUPAM MITRA                                                                         | 11900114053 |                                                                                                                        |  |  |  |  |  |  |  |
| 2   | SACHIN KUMAR SAHA                                                                   | 11900114054 | Additionaldoubtclearingsessions                                                                                        |  |  |  |  |  |  |  |
| 3   | SAMRAT BHATTACHARJEE                                                                | 11900114059 | • Providing extra assignments to students with poor attendance.                                                        |  |  |  |  |  |  |  |
| 4   | SANDIPAN CHAKRABORTY                                                                | 11900114060 | <ul> <li>Guiding them through previous question papers</li> <li>Highlighting important and frequently asked</li> </ul> |  |  |  |  |  |  |  |
| 5   | SAYAN CHAKRABORTYTY                                                                 | 11900114064 | questions                                                                                                              |  |  |  |  |  |  |  |
|     |                                                                                     |             |                                                                                                                        |  |  |  |  |  |  |  |

# CERTIFICATE

I, the undersigned, have completed the course all otted to meas shown below

| Sl. No. | Semester | Subject with Code                                                             | Total<br>Chapters | Remarks |
|---------|----------|-------------------------------------------------------------------------------|-------------------|---------|
| 1.      | 3rd      | Data Structure & Algorithm (CS302)<br>Data Structure & Algorithm Lab (CS 392) | 10                |         |

| Date: Signature of Faculty |
|----------------------------|
|----------------------------|

64

# Submitted to HOD

### **Certificate by HOD**

I, the undersigned, certify that **Prof. Sutapa Bhattacharya** has completed thecourse work allotted to him satisfactorily / not satisfactorily.

| Date : | Signature of HOD |
|--------|------------------|
| Date . | Signature of HOD |

## Submitted to Director

| Date : Signature of Director |  | Date : | Signature of Director |
|------------------------------|--|--------|-----------------------|
|------------------------------|--|--------|-----------------------|